• Title/Summary/Keyword: bigdata analysis

Search Result 345, Processing Time 0.026 seconds

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

Development of Social Data Collection and Loading Engine-based Reliability analysis System Against Infectious Disease Pandemic (감염병 위기 대응을 위한 소셜 데이터 수집 및 적재 엔진 기반 신뢰도 분석 시스템 개발)

  • Doo Young Jung;Sang-Jun Lee;MIN KYUNG IL;Seogsong Jeong;HyunWook Han
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.103-111
    • /
    • 2022
  • There are many institutions, organizations, and sites related to responding to infectious diseases, but as the pandemic situation such as COVID-19 continues for years, there are many changes in the initial and current aspects, and accordingly, policies and response systems are evolving. As a result, regional gaps arise, and various problems are scattered due to trust, distrust, and implementation of policies. Therefore, in the process of analyzing social data including information transmission, Twitter data, one of the major social media platforms containing inaccurate information from unknown sources, was developed to prevent facts in advance. Based on social data, which is unstructured data, an algorithm that can automatically detect infectious disease threats is developed to create an objective basis for responding to the infectious disease crisis to solidify international competitiveness in related fields.

A Study of a Video-based Simulation Input Modeling Procedure in a Construction Equipment Assembly Line (건설기계 조립라인의 동영상 기반 시뮬레이션 입력 모델링 절차 연구)

  • Hoyoung Kim;Taehoon Lee;Bonggwon Kang;Juho Lee;Soondo Hong
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • A simulation technique can be used to analyze performance measures and support decision makings in manufacturing systems considering operational uncertainty and complexity. The simulation requires an input modeling procedure to reflect the target system's characteristics. However, data collection to build a simulation is quite limited when a target system includes manual productions with a lot of operational time such as construction equipment assembly lines. This study proposes a procedure for simulation input modeling using video data when it is difficult to collect enough input data to fit a probability distribution. We conducted a video-data analysis and specify input distributions for the simulation. Based on the proposed procedure, simulation experiments were conducted to evaluate key performance measures of the target system. We also expect that the proposed procedure may help simulation-based decision makings when obtaining input data for a simulation modeling is quite challenging.

A Study on Keywords Extraction from Entertainment News using Bigdata Processing (빅데이터 처리를 통한 연예 뉴스에서의 키워드 추출에 관한 연구)

  • Yoo, Sang-Hyun;Lee, Sang-Jun
    • Jounal of The Korea Society of Information Technology Policy & Management
    • /
    • v.11 no.6
    • /
    • pp.1503-1507
    • /
    • 2019
  • With the softness of online entertainment news articles and the increasing number of quick-reporting articles in the entertainment sector, many people have access to entertainment front-page articles and are now able to make reviews of celebrities. It is not easy to systematically analyze which news articles are about which celebrities in a real-time environment, although their reputation is a key factor in the entertainment agency's business strategy, which should make the most of its affiliated celebrity resources. Based on the amount of celebrity references mentioned in entertainment news data, this paper proposes an entertainment news keyword analysis system, which extracts celebrities that are the subject of the article and associates them with the celebrity entertainment agency in question. Through the system proposed in this paper, advertisers or entertainment agencies can judge the value of the celebrity as reference material for the business. In addition, it can lay the groundwork for an investment strategy by predicting the outlook for the entertainment company for brokerages and investors.

Designing Bigdata Platform for Multi-Source Maritime Information

  • Junsang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.111-119
    • /
    • 2024
  • In this paper, we propose a big data platform that can collect information from various sources collected at ocean. Currently operating ocean-related big data platforms are focused on storing and sharing created data, and each data provider is responsible for data collection and preprocessing. There are high costs and inefficiencies in collecting and integrating data in a marine environment using communication networks that are poor compared to those on land, making it difficult to implement related infrastructure. In particular, in fields that require real-time data collection and analysis, such as weather information, radar and sensor data, a number of issues must be considered compared to land-based systems, such as data security, characteristics of organizations and ships, and data collection costs, in addition to communication network issues. First, this paper defines these problems and presents solutions. In order to design a big data platform that reflects this, we first propose a data source, hierarchical MEC, and data flow structure, and then present an overall platform structure that integrates them all.

ONNX-based Runtime Performance Analysis: YOLO and ResNet (ONNX 기반 런타임 성능 분석: YOLO와 ResNet)

  • Jeong-Hyeon Kim;Da-Eun Lee;Su-Been Choi;Kyung-Koo Jun
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.89-100
    • /
    • 2024
  • In the field of computer vision, models such as You Look Only Once (YOLO) and ResNet are widely used due to their real-time performance and high accuracy. However, to apply these models in real-world environments, factors such as runtime compatibility, memory usage, computing resources, and real-time conditions must be considered. This study compares the characteristics of three deep model runtimes: ONNX Runtime, TensorRT, and OpenCV DNN, and analyzes their performance on two models. The aim of this paper is to provide criteria for runtime selection for practical applications. The experiments compare runtimes based on the evaluation metrics of time, memory usage, and accuracy for vehicle license plate recognition and classification tasks. The experimental results show that ONNX Runtime excels in complex object detection performance, OpenCV DNN is suitable for environments with limited memory, and TensorRT offers superior execution speed for complex models.

Designing a Drone Delivery Network for Disaster Response Considering Regional Disaster Vulnerability Index (재난 취약도 지수를 고려한 재난 대응 드론 거점 입지 선정)

  • OkKyung Lim;SangHwa Song
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.115-126
    • /
    • 2024
  • The scale and cost of disasters are increasing globally, emphasizing the importance of logistics activities in disaster response. A disaster response logistics system must place logistics hub centers in regions relatively safe from disasters and ensure the stable supply of relief goods and emergency medicines to the affected areas. Therefore, this study focuses on locating drone delivery centers that minimize disaster vulnerability when designing a disaster response delivery network. To facilitate the transport of relief supplies via drones, the maximum delivery range of drones is considered and we employed a natural disaster vulnerability index to develop optimization models for selecting drone delivery center locations that minimize disaster vulnerability. The analysis indicates that while the optimization models to minimize disaster vulnerability increase the number of hub investments, these approaches mitigate disaster vulnerability and allows the safe and effective operation of a disaster response logistics system utilizing drone deliveries.

Measuring Changes in Fine Particulate Matter in Green Transportation Areas Due to Vehicle Operation Restrictions (차량 등급 운행 제한에 따른 녹색교통지역의 초미세먼지 변화 측정)

  • Joong-An Kim;Jong-Pil Yu;Young-Eun Jo
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.127-140
    • /
    • 2024
  • This study investigated the impact of vehicle grade operation restrictions in green transportation areas on the concentration of fine particulate matter (PM2.5) year by year. The results indicate that these restrictions positively affected the reduction of PM2.5 levels. The green transportation area policy reduced vehicle emissions and encouraged the use of public and eco-friendly transportation, thereby improving air quality. A notable outcome was the decrease in PM2.5 concentrations, which is expected to positively impact the health of residents in urban areas. The study considered various factors and variables related to the effectiveness of the vehicle grade operation restrictions policy. It was determined that there is a need to discuss the implementation methods of the policy, regional characteristics, and other environmental factors. These findings provide important implications for managing fine particulate matter and urban planning, suggesting that reference materials and ongoing research will be necessary considering future urban sustainability.

Utilizing NLP-based Data Techniques from Customer Reviews: Deriving Insights and Strategies for Cushion Product Improvement (고객 리뷰를 통한 NLP 기반 데이터 기술 활용: 고객 인사이트 도출과 쿠션 제품 개선 방안 연구)

  • Sel-A Lim;Mi-yeon Cho;Eun-Bi Jo;Su-Han Yu
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • This study aims to provide insights for developing innovative products, based on reviews from females aged 30 to 70 who bought cosmetic cushions via TV home shopping. Analyzing 200,000 reviews with Selenium and NLP techniques, we found the main audience is in their 50s and 60s, prioritizing radiance, blemish and wrinkle coverage, and adherence. Notably, products with appealing designs were preferred, especially for gifting among relatives and friends. The proposed innovation is Korea's first AI-recommended cushion, utilizing NLP to match customer needs. Key ingredient recommendations include S.Acamella extract and AHA components, chosen for their perceived benefits and consumer preference. The research also highlights the importance of product aesthetics and gift potential, suggesting marketing strategies should emphasize these aspects to appeal to the target demographic. This approach aims to guide product development and marketing towards meeting consumer expectations in the cosmetic cushion industry, making products more personalized and gift-worthy.

A Study on the Analysis of Aviation Safety Data Structure and Standard Classification (항공안전데이터 구조 분석 및 표준 분류체계에 관한 연구)

  • Kim, Jun Hwan;Lim, Jae Jin;Lee, Jang Ryong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.89-101
    • /
    • 2020
  • In order to enhance the safety of the international aviation industry, the International Civil Aviation Organization has recommended establishing an operational foundation for systematic and integrated collection, storage, analysis and sharing of aviation safety data. Accordingly, the Korea aviation industry also needs to comprehensively manage the safety data which generated and collected by various stakeholders related to aviation safety, and through this, it is necessary to previously identify and remove hazards that may cause accident. For more effective data management and utilization, a standard structure should be established to enable integrated management and sharing of safety data. Therefore, this study aims to propose the framework about how to manage and integrate the aviation safety data for big data-based aviation safety management and shared platform.