Kim, Taemin;Kang, Namho;Park, Sanghyeon;Lee, Hyungmook;Kim, Sungjin
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.95-96
/
2021
본 논문에서는, 서울시 자치구별 공공데이터를 활용한 분석 정보를 통해, 도시가 어떤 구조와 산업으로 형성되었는지 알아본다. 데이터 분석을 통해 얻어진 서울의 특징과 도시(자치구별)의 교통 측면, 상업, 데이터에서 발견한 정보를 통해 도시 특성과 구조를 알아본다. 본 논문에서 연구한 결과는 스마트 도시 정책에 활용하여 도시 기본 설계시 교통, 주거, 상업 등의 효율성을 증대 시키는데 기본 자료로 활용할 수 있다.
Sung Ryul Shim;Yo Hwan Lim;Myunghee Hong;Gyuseon Song;Hyun Wook Han
The Journal of Bigdata
/
v.6
no.2
/
pp.61-70
/
2021
The objective of this study was to describe specific approaches for data extraction from graph when statistical information is not directly reported in some articles, enabling data intergration and meta-analysis for quantitative data synthesis. Particularly, meta-analysis is an important analysis tool that allows the right decision making for evidence-based medicine by systematically and objectively selects target literature, quantifies the results of individual studies, and provides the overall effect size. For data integration and meta-analysis, we investigated the strength points about the introduction and application of Adobe Acrobet Reader and Python-based Jupiter Lab software, a computer tool that extracts accurate statistical figures from graphs. We used as an example data that was statistically verified throught an previous studies and the original data could be obtained from ClinicalTrials.gov. As a result of meta-analysis of the original data and the extraction values of each computer software, there was no statistically significant difference between the extraction methods. In addition, the intra-rater reliability of between researchers was confirmed and the consistency was high. Therefore, In terms of maintaining the integrity of statistical information, measurement using a computational tool is recommended rather than the classically used methods.
Kim, Il Jung;Kim, Woo Soon;Kim, Joon Young;Chae, Hee Su;Woo, Ji Yeong;Do, Kyung Min;Lim, Sung Hoon;Shin, Min Soo;Lee, Ji Eun;Kim, Heung Nam
Journal of Korean Society for Quality Management
/
v.50
no.4
/
pp.647-664
/
2022
Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.34
no.6
/
pp.303-314
/
2022
The persistence analysis of marine physical environment factors is a basic analysis that must precede the use of sea areas as an analysis required in the coastal engineering such as downtime and design. In this study, the persistence analysis was implemented for wind speed and significant wave height data from four observation points of Deokjeokdo, Oeyeondo, Geomundo, and Geojedo among the marine meteorological observation buoys of the Korea Meteorological Administration. The persistence time means the consecutive time of observation data beyond specific level. The threshold wind speed and significant wave height were set in the range of 1~15 m/s and the range of 0.25~3.0 m, respectively. Then, the persistence time was extracted. As a result of the analysis, the persistence time of wind speed and significant wave height decreased rapidly as the reference value increased. The median persistence times under the maximum reference thresholds were assessed as a maximum of 5 hours for wind speed and a maximum of 8 hours for significant wave height. When the reference wind speed and significant wave height were 15 m/s and 3 m, respectively, the persistence time that could occur with a 1% probability were 52 and 56 hours. This study can be expanded to all coastal areas in Korea, and it is expected that various engineering applications by performing a persistence analysis of the metocean data.
Bae, Hyerim;Park, Sanghyuck;Choi, Yulim;Joo, Byeongjun;Sutrisnowati, Riska Asriana;Pulshashi, Iq Reviessay;Putra, Ahmad Dzulfikar Adi;Adi, Taufik Nur;Lee, Sanghwa;Won, Seokrae
The Journal of Bigdata
/
v.1
no.2
/
pp.9-19
/
2016
Since ICT convergence became a major issue, German government has carried forward a policy 'Industry 4.0' that triggered ICT convergence with manufacturing. Now this trend gets into our stride. From this facts, we can expect great leap up to quality perfection in low cost. Recently Korean government also enforces policy with 'Manufacturing 3.0' for upgrading Korean manufacturing industry with being accelerated by many related technologies. We, in the paper, developed a custom-made operational big data analysis platform for the implementation of operational intelligence to improve industry capability. Our platform is designed based on spring framework and web. In addition, HDFS and spark architectures helps our system analyze massive data on the field with streamed data processed by process mining algorithm. Extracted knowledge from data will support enhancement of manufacturing performance.
There are various investment strategy reports available online, prepared by many financial analysts. If the correlation between the title of the report and analyst forecast can be found, we can tell from the title whether analyst' forecast will be reliable or not. The objective of this study is to see the correlation between the title of analyst investment strategy report and the actual result of forecast by using the Text Mining technique. The result of actual analysis showed that "strong buy and sell call" appeared in the title lead the higher accuracy of analyst forecast and fulfillment ratio. The results that potential investors can get better information by reading the title of the analyst report. We hope that this study could be the basis for new methodologies in this area.
Park, Ji-Hyeon;Choi, Jae-Myeong;Park, Byoung-Lyoul;Kang, Heau-Jo
Journal of Advanced Navigation Technology
/
v.16
no.3
/
pp.495-503
/
2012
As modern society rapidly changes, the field of education has also developed speedily. Since Edunet system developed in 1996, many different systems are developing continuously such as Center for Teaching and Learning, cyber home learning systems, diagnosis prescribing systems, video systems, teaching and counseling, and study management systems. However, the aforementioned systems have had not great response from the educational consumers due to a lack of interconnection. There are several reasons for it. One of the reasons is that program administrators did not carefully consider the continuity of each programs but established a brand new system whenever they need rather than predict or consider the future needs. The suitable system for smart education should be one big integrated system based on many different data analysis and processing. The system should also supply educational consumers various and useful information by adopting the idea of bigdata rather than a single sign on system connecting each independent system. The cloud computing system should be established as a system that can be managed not as simple compiled files and application programs but as various contents and DATA.
The inventory location is the mos important factor which decide the efficiency of picking orders. According to the inventory location, it is possible to optimize the route for picking order, and then it makes us to expect the cost reduction and efficiency improvement. However, it is practical situation to make decisions where to keep the products based on manager's intuition and experience, not based on the systematical or analytical approach. In this research, with the practical order data of cropper product and layout for the storage yard, the association rules have found, and then the new methodology has been devised to make the decision where to keep the inventory. By utilizing the practical order data for a year, it has been proved that the proposed approach can reduce the total distance of the all routes for picking order and solve the problem of delayed delivery.
According to precedent research of disaster economics, most of the studies are either based on belated macroeconomic indicators or are limited to specific industries. It is certain that preventing disaster is important, but immediate analysis and reconstruction policy are crucial as well. This research analyzed the ripple effect of consumer spending followed by April 16 ferry disaster and MERS outbreak; it was done by applying credit card company's real-time big data with Marketing Mix Modeling. The main focus of this research is to see if it is possible to predict the scale of damage during ongoing disasters. It is found that setting up weekly MMM and moving the timeline draws significance conclusion. When disasters or events occur in future, this research may be the basis of building quick and intuitive indicator to monitor possible effects.
With the development of the big data environment, public institutions also have been providing big data infrastructures. Public data is one of the typical examples, and numerous applications using public data have been provided. One of the cases is related to the employment insurance. All employers have to make contracts for the employment insurance for all employees to protect the rights. However, there are abundant cases where employers avoid to buy insurances. To overcome these challenges, a data-driven approach is needed; however, there are lacks of methodologies to integrate, manage, and analyze the public data. In this paper, we propose a methodology to build a predictive model for identifying whether employers have made the contracts of employment insurance based on public data. The methodology includes collection, integration, pre-processing, analysis of data and generating prediction models based on process mining and data mining techniques. Also, we verify the methodology with case studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.