• 제목/요약/키워드: big data mining

검색결과 699건 처리시간 0.021초

텍스트마이닝을 이용한 약물유해반응 보고자료 분석 (Analysis of Adverse Drug Reaction Reports using Text Mining)

  • 김현희;유기연
    • 한국임상약학회지
    • /
    • 제27권4호
    • /
    • pp.221-227
    • /
    • 2017
  • Background: As personalized healthcare industry has attracted much attention, big data analysis of healthcare data is essential. Lots of healthcare data such as product labeling, biomedical literature and social media data are unstructured, extracting meaningful information from the unstructured text data are becoming important. In particular, text mining for adverse drug reactions (ADRs) reports is able to provide signal information to predict and detect adverse drug reactions. There has been no study on text analysis of expert opinion on Korea Adverse Event Reporting System (KAERS) databases in Korea. Methods: Expert opinion text of KAERS database provided by Korea Institute of Drug Safety & Risk Management (KIDS-KD) are analyzed. To understand the whole text, word frequency analysis are performed, and to look for important keywords from the text TF-IDF weight analysis are performed. Also, related keywords with the important keywords are presented by calculating correlation coefficient. Results: Among total 90,522 reports, 120 insulin ADR report and 858 tramadol ADR report were analyzed. The ADRs such as dizziness, headache, vomiting, dyspepsia, and shock were ranked in order in the insulin data, while the ADR symptoms such as vomiting, 어지러움, dizziness, dyspepsia and constipation were ranked in order in the tramadol data as the most frequently used keywords. Conclusion: Using text mining of the expert opinion in KIDS-KD, frequently mentioned ADRs and medications are easily recovered. Text mining in ADRs research is able to play an important role in detecting signal information and prediction of ADRs.

A Study of Comparison between Cruise Tours in China and U.S.A through Big Data Analytics

  • Shuting, Tao;Kim, Hak-Seon
    • 한국조리학회지
    • /
    • 제23권6호
    • /
    • pp.1-11
    • /
    • 2017
  • The purpose of this study was to compare the cruise tours between China and U.S.A. through the semantic network analysis of big data by collecting online data with SCTM (Smart crawling & Text mining), a data collecting and processing program. The data analysis period was from January $1^{st}$, 2015 to August $15^{th}$, 2017, meanwhile, "cruise tour, china", "cruise tour, usa" were conducted to be as keywords to collet related data and packaged Netdraw along with UCINET 6.0 were utilized for data analysis. Currently, Chinese cruisers concern on the cruising destinations while American cruisers pay more attention on the onboard experience and cruising expenditure. After performing CONCOR (convergence of iterated correlation) analysis, for Chinese cruise tour, there were three clusters created with domestic destinations, international destinations and hospitality tourism. As for American cruise tour, four groups have been segmented with cruise expenditure, onboard experience, cruise brand and destinations. Since the cruise tourism of America was greatly developed, this study also was supposed to provide significant and social network-oriented suggestions for Chinese cruise tourism.

빅데이터를 활용한 음식관광관련 의미연결망 분석의 탐색적 적용 (An Exploratory Study on the Semantic Network Analysis of Food Tourism through the Big Data)

  • 김학선
    • 한국조리학회지
    • /
    • 제23권4호
    • /
    • pp.22-32
    • /
    • 2017
  • The purpose of this study was to explore awareness of food tourism using big data analysis. For this, this study collected data containing 'food tourism' keywords from google web search, google news, and google scholar during one year from January 1 to December 31, 2016. Data were collected by using SCTM (Smart Crawling & Text Mining), a data collecting and processing program. From those data, degree centrality and eigenvector centrality were analyzed by utilizing packaged NetDraw along with UCINET 6. The result showed that the web visibility of 'core service' and 'social marketing' was high. In addition, the web visibility was also high for destination, such as rural, place, ireland and heritage; 'socioeconomic circumstance' related words, such as economy, region, public, policy, and industry. Convergence of iterated correlations showed 4 clustered named 'core service', 'social marketing', 'destinations' and 'social environment'. It is expected that this diagnosis on food tourism according to changes in international business environment by using these web information will be a foundation of baseline data useful for establishing food tourism marketing strategies.

빅데이터 기반 정보 추천 시스템 (Big data-based information recommendation system)

  • 이종찬;이문호
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.443-450
    • /
    • 2018
  • 삶의 질의 향상으로 인하여 건강관리는 현대인의 주요 관심 사항이며 자연스럽게 헬스케어 시스템에 대한 요구가 증가하고 있다. 그러나 인터넷 상에는 다양한 의료 관련 정보가 존재할 뿐만 아니라 이 정보들의 신뢰성 또한 가늠하기 힘든 것이 현실이므로, 특정 사용자에게 적합한 맞춤형 웰니스 정보 제공은 어려운 것이 현실이다. 본 연구에서는 빅데이터를 텍스트 마이닝으로 분류하여 사용자 맞춤형 의료정보를 제공함으로서 단순 검색기능이 아닌 사용자에게 적합한 맞춤 서비스를 제공할 수 있는 사용자 중심의 서비스 제공 방법을 제안한다. 효율적인 빅데이터 분석을 위해 하둡 슬레이브 노드를 증가하면서 데이터 처리시간을 실험하였다. 기존 시스템보다 빅데이터 시스템을 구축하는 것이 효율적임을 확인하였다.

Performance Comparison of Decision Trees of J48 and Reduced-Error Pruning

  • Jin, Hoon;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.30-33
    • /
    • 2016
  • With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.

키워드 기반 주제중심 분석을 이용한 비정형데이터 처리 (Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.521-526
    • /
    • 2017
  • 데이터는 데이터 형식이 다양하고 방대할 뿐만 아니라 그 생성 속도가 매우 빨라 기존의 데이터 처리 방식이 아닌 새로운 관리 및 분석 방법이 요구된다. 소셜 네트워크 상의 온라인 문서에서 인간의 언어로 쓰여진 비정형 텍스트에서 Text Mining기법을 사용하여 유용한 정보를 추출할 수 있다. 소셜미디어에 남긴 정치, 경제, 문화에 대한 메시지에 대한 경향을 파악하는 것이 어떤 주제에 관심을 가지고 있는지를 파악할 수 있는 요소가 된다. 본 연구에서는 주제 중심 분석 기법을 이용하여 주어진 키워드에 관한 온라인 뉴스를 대상으로 텍스트 마이닝을 수행하였다. LDA(Latent Dirichiet Allocation)를 이용하여 웹문서로부터 정보를 추출하고 이로부터 사람들이 실제로 주어진 키워드에 대하여 어떤 주제에 관심이 있고 관련된 핵심 가치 중 어떤 주제를 중심으로 전파되고 있는지를 분석하였다.

자연재해 분석을 위한 빅데이터 마이닝 기술 (Big data mining for natural disaster analysis)

  • 김영민;황미녕;김태홍;정창후;정도헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1105-1115
    • /
    • 2015
  • 자연재해 빅데이터 분석은 현재 소셜 미디어 데이터 등 텍스트 데이터를 중심으로 시작되고 있으며 이는 재난관리의 네 단계인 예방, 대비, 대응, 복구에서 마지막 두 단계에 주로 해당된다. 반면 기상 데이터 자체에 대한 빅데이터 분석은 사전 관리에 해당하는 예방, 대비 단계에 활용될 수 있어 이와 관련한 연구 사례에 대한 체계적인 정리가 필요하다. 본 논문은 리뷰 논문으로서, 자연재해 영역에서 텍스트 데이터 외의 빅데이터를 다루는 분석 기술들에 대해 소개한다. 이를 위해 기상 관련 분야에서 사용되고 있는 데이터 마이닝 및 기계 학습 기술들을 살피고 각 기상 데이터의 특성에 맞춰 기존의 기술들이 어떻게 변형되는 지 밝힌다. 우선 2절에서 빅데이터, 데이터 마이닝, 기계 학습에 대한 기본 개념을 설명하고 3절에서 데이터 마이닝 및 기계 학습 기술의 실제 적용 사례를 상세히 정리한다. 4절에서는 자연재해 대응에 이러한 기술들이 직접 활용되는 예를 소개하고 마지막에 결론으로 마무리한다.

A Study on the Meaning of The First Slam Dunk Based on Text Mining and Semantic Network Analysis

  • Kyung-Won Byun
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.164-172
    • /
    • 2023
  • In this study, we identify the recognition of 'The First Slam Dunk', which is gaining popularity as a sports-based cartoon through big data analysis of social media channels, and provide basic data for the development and development of various contents in the sports industry. Social media channels collected detailed social big data from news provided on Naver and Google sites. Data were collected from January 1, 2023 to February 15, 2023, referring to the release date of 'The First Slam Dunk' in Korea. The collected data were 2,106 Naver news data, and 1,019 Google news data were collected. TF and TF-IDF were analyzed through text mining for these data. Through this, semantic network analysis was conducted for 60 keywords. Big data analysis programs such as Textom and UCINET were used for social big data analysis, and NetDraw was used for visualization. As a result of the study, the keyword with the high frequency in relation to the subject in consideration of TF and TF-IDF appeared 4,079 times as 'The First Slam Dunk' was the keyword with the high frequency among the frequent keywords. Next are 'Slam Dunk', 'Movie', 'Premiere', 'Animation', 'Audience', and 'Box-Office'. Based on these results, 60 high-frequency appearing keywords were extracted. After that, semantic metrics and centrality analysis were conducted. Finally, a total of 6 clusters(competing movie, cartoon, passion, premiere, attention, Box-Office) were formed through CONCOR analysis. Based on this analysis of the semantic network of 'The First Slam Dunk', basic data on the development plan of sports content were provided.

빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로 (A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money))

  • 안순재;이새미;유승의
    • 디지털융복합연구
    • /
    • 제18권7호
    • /
    • pp.93-99
    • /
    • 2020
  • 본 연구에서는 비정형적인 대용량의 텍스트 자료로부터 유의미한 정보를 추출하는 빅데이터 분석방법 중 텍스트 마이닝을 이용하여 시행 중인 정책과 제도에 대한 시민의견을 모니터링 할 수 있는지 확인하였다. '경기지역화폐'와 관련된 5,108건의 신문기사와 748건의 온라인 카페글을 수집하여 빈도분석, TF-IDF분석, 연관분석, 워드트리 시각화 분석을 수행하였다. 그 결과로 기사에서는 지역화폐의 도입 목적, 제공되는 혜택, 사용방법에 관련된 내용이 많았고 카페글에서는 지역화폐의 실사용과 관련된 내용 위주로 작성이 되어있음을 확인하였다. 또한 지역화폐 활성화를 위해서 뉴스는 정보전달자로서 지역화폐의 홍보에 관여하고 있었고 카페글은 지역화폐 사용자인 시민들의 의견으로 이루어져 사용과 관련된 실제적인 정보 교환의 장으로 기능하고 있었다. 지역화폐뿐만 아니라 다양한 정책과 제도에 관해서도 SNS와 텍스트 마이닝을 통해 시민들의 의견을 수렴하여 효과적으로 활성화시킬 수 있을 것으로 보인다.

Estimation of Smart Election System data

  • Park, Hyun-Sook;Hong, You-Sik
    • International journal of advanced smart convergence
    • /
    • 제7권2호
    • /
    • pp.67-72
    • /
    • 2018
  • On the internal based search, the big data inference, which is failed in the president's election in the United States of America in 2016, is failed, because the prediction method is used on the base of the searching numerical value of a candidate for the presidency. Also the Flu Trend service is opened by the Google in 2008. But the Google was embarrassed for the fame's failure for the killing flu prediction system in 2011 and the prediction of presidential election in 2016. In this paper, using the virtual vote algorithm for virtual election and data mining method, the election prediction algorithm is proposed and unpacked. And also the WEKA DB is unpacked. Especially in this paper, using the K means algorithm and XEDOS tools, the prediction of election results is unpacked efficiently. Also using the analysis of the WEKA DB, the smart election prediction system is proposed in this paper.