• 제목/요약/키워드: big data analysis technology

검색결과 1,132건 처리시간 0.035초

Challenges and Opportunities of Big Data

  • Khalil, Md Ibrahim;Kim, R. Young Chul;Seo, ChaeYun
    • Journal of Platform Technology
    • /
    • 제8권2호
    • /
    • pp.3-9
    • /
    • 2020
  • Big Data is a new concept in the global and local area. This field has gained tremendous momentum in the recent years and has attracted attention of several researchers. Big Data is a data analysis methodology enabled by recent advances in information and communications technology. However, big data analysis requires a huge amount of computing resources making adoption costs of big data technology. Therefore, it is not affordable for many small and medium enterprises. We survey the concepts and characteristics of Big Data along with a number of tools like HADOOP, HPCC for managing Big Data. It also presents an overview of big data like Characteristics of Big data, big data technology, big data management tools etc. We have also highlighted on some challenges and opportunities related to the fields of big data.

  • PDF

Big Data Smoothing and Outlier Removal for Patent Big Data Analysis

  • Choi, JunHyeog;Jun, Sunghae
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권8호
    • /
    • pp.77-84
    • /
    • 2016
  • In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.

빅데이터 분석과 헬스케어에 대한 동향 (A review of big data analytics and healthcare)

  • 문석재;이남주
    • 한국응용과학기술학회지
    • /
    • 제37권1호
    • /
    • pp.76-82
    • /
    • 2020
  • Big data analysis in healthcare research seems to be a necessary strategy for the convergence of sports science and technology in the era of the Fourth Industrial Revolution. The purpose of this study is to provide the basic review to secure the diversity of big data and healthcare convergence by discussing the concept, analysis method, and application examples of big data and by exploring the application. Text mining, data mining, opinion mining, process mining, cluster analysis, and social network analysis is currently used. Identifying high-risk factor for a certain condition, determining specific health determinants for diseases, monitoring bio signals, predicting diseases, providing training and treatments, and analyzing healthcare measurements would be possible via big data analysis. As a further work, the big data characteristics provide very appropriate basis to use promising software platforms for development of applications that can handle big data in healthcare and even more in sports science.

빅 데이터의 새로운 고객 가치와 비즈니스 창출을 위한 대응 전략 (Correspondence Strategy for Big Data's New Customer Value and Creation of Business)

  • 고준철;이해욱;정지윤;강경식
    • 대한안전경영과학회지
    • /
    • 제14권4호
    • /
    • pp.229-238
    • /
    • 2012
  • Within last 10 years, internet has become a daily activity, and humankind had to face the Data Deluge, a dramatic increase of digital data (Economist 2012). Due to exponential increase in amount of digital data, large scale data has become a big issue and hence the term 'big data' appeared. There is no official agreement in quantitative and detailed definition of the 'big data', but the meaning is expanding to its value and efficacy. Big data not only has the standardized personal information (internal) like customer information, but also has complex data of external, atypical, social, and real time data. Big data's technology has the concept that covers wide range technology, including 'data achievement, save/manage, analysis, and application'. To define the connected technology of 'big data', there are Big Table, Cassandra, Hadoop, MapReduce, Hbase, and NoSQL, and for the sub-techniques, Text Mining, Opinion Mining, Social Network Analysis, Cluster Analysis are gaining attention. The three features that 'bid data' needs to have is about creating large amounts of individual elements (high-resolution) to variety of high-frequency data. Big data has three defining features of volume, variety, and velocity, which is called the '3V'. There is increase in complexity as the 4th feature, and as all 4features are satisfied, it becomes more suitable to a 'big data'. In this study, we have looked at various reasons why companies need to impose 'big data', ways of application, and advanced cases of domestic and foreign applications. To correspond effectively to 'big data' revolution, paradigm shift in areas of data production, distribution, and consumption is needed, and insight of unfolding and preparing future business by considering the unpredictable market of technology, industry environment, and flow of social demand is desperately needed.

Analyzing XR(eXtended Reality) Trends in South Korea: Opportunities and Challenges

  • Sukchang Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.221-226
    • /
    • 2024
  • This study used text mining, a big data analysis technique, to explore XR trends in South Korea. For this research, I utilized a big data platform called BigKinds. I collected data focusing on the keyword 'XR', spanning approximately 14 years from 2010 to 2024. The gathered data underwent a cleansing process and was analyzed in three ways: keyword trend analysis, relational analysis, and word cloud. The analysis identified the emergence and most active discussion periods of XR, with XR devices and manufacturers emerging as key keywords.

Utilization and Analysis of Big-data

  • Lee, Soowook;Han, Manyong
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.255-259
    • /
    • 2019
  • This study reviews the analysis and characteristics of databases from big data and then establishes representational strategy. Thus, analysis has continued for a long time in the quantity and quality of data, and there are changes in the location of data in the social sciences, past trends and the emergence of big data. The introduction of big data is presented as a prototype of new social science and is a useful practical example that empirically shows the need, basis, and direction of analysis through trend prediction services. Big data provides a future perspective as an important foundation for social change within the framework of basic social sciences.

데이터 사이언티스트의 역량과 빅데이터 분석성과의 PLS 경로모형분석 : Kaggle 플랫폼을 중심으로 (PLS Path Modeling to Investigate the Relations between Competencies of Data Scientist and Big Data Analysis Performance : Focused on Kaggle Platform)

  • 한경진;조근태
    • 대한산업공학회지
    • /
    • 제42권2호
    • /
    • pp.112-121
    • /
    • 2016
  • This paper focuses on competencies of data scientists and behavioral intention that affect big data analysis performance. This experiment examined nine core factors required by data scientists. In order to investigate this, we conducted a survey to gather data from 103 data scientists who participated in big data competition at Kaggle platform and used factor analysis and PLS-SEM for the analysis methods. The results show that some key competency factors have influential effect on the big data analysis performance. This study is to provide a new theoretical basis needed for relevant research by analyzing the structural relationship between the individual competencies and performance, and practically to identify the priorities of the core competencies that data scientists must have.

빅데이터 컴퓨팅을 위한 분석기법에 관한 연구 (A Study on the Analysis Techniques for Big Data Computing)

  • 오선진
    • 문화기술의 융합
    • /
    • 제7권3호
    • /
    • pp.475-480
    • /
    • 2021
  • 모바일 컴퓨팅과 클라우드 컴퓨팅 기술 그리고 소셜 네트워크 서비스의 급속한 발전과 더불어, 우리들은 시시각각 양산되고 있는 데이터의 홍수 속에서 살고 있으며, 이러한 대규모의 데이터는 매우 가치가 높은 중요한 정보를 품고 있다는 사실을 알게 되었다. 하지만 빅데이터는 잠재적인 유용한 가치와 치명적인 위험을 모두 가지고 있으며 오늘날 이러한 빅데이터로부터 유용한 정보를 효율적으로 추출해 내고 잠재된 정보를 효과적으로 활용하기 위한 연구와 응용이 활발하게 이루어지고 있는 상황이다. 여기서 빅데이터 컴퓨팅 과정 중 무엇보다도 중요한 것은 대용량 데이터로부터 유용하고 귀중한 정보를 효율적으로 추출해 낼 수 있는 적절한 데이터 분석기법을 찾아 적용하는 것이다. 본 연구에서는 이러한 빅데이터 컴퓨팅을 효율적으로 수행하여 원하는 유용한 정보를 추출할 수 있는 기존의 다양한 빅데이터 분석기법들을 조사하여, 그 특징과 장·단점 등을 비교 분석하고, 특별한 상황에서 빅데이터 분석기법을 이용하여 유용한 정보를 효율적으로 추출해 내고, 이들 잠재된 정보를 효과적으로 활용할 수 있도록 하는 방안을 제시하고자 한다.

Big Data Adoption in the Construction Industry: Status Quo, Drivers and Challenges

  • Xiaojing ZHAO;Hezhang DENG;Piaoran WANG;Mi PAN
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.391-398
    • /
    • 2024
  • Under the influence of pervasive digital revolution, the world is overwhelmed with data with an increasing speed of data generation. The accessibility and analysis of 'big data' can provide useful insight and help various industry sectors revolute. Although the concept of 'big data' has gained popularity in the construction industry in recent years, the construction industry remains at a nascent stage in the adoption of big data technologies and lags behind other sectors. To the best of our knowledge, few empirical studies have been done to examine the status quo of big data adoption in the construction sector and its influencing factors. This paper fills the gaps and examines the current status of big data adoption in companies with different sizes and roles and projects with different types, and the drivers and challenges in adopting big data technologies. After an extensive literature review, a questionnaire survey and post-interviews were conducted. The results of the analysis show that the big data adoption in the construction sector is affected by the size of companies and the work experience of employees. Technology advancement, competitiveness, government plan, and policy initiatives are the main drivers of the big data adoption, while design appropriate system, difficulty in data collection and the lack of knowledge and experience were found to be the major challenges for the big data adoption in the construction sector. Finally, the identified top three strategies to overcome challenges and promote big data adoption are 'clear organization structure', 'government incentives' and 'the training of IT personnel'. The findings of this study guide construction practitioners in different companies and projects put domain specific strategies in place to enhance the big data adoption.

4차 산업혁명 시대에 적합한 빅데이터 대학 교육과정 연구 (Research on big data curriculum in university suitable for the era of the 4th industrial revolution)

  • Choi, Hun;Kim, Gimun
    • 한국정보통신학회논문지
    • /
    • 제24권11호
    • /
    • pp.1562-1565
    • /
    • 2020
  • With the development of digital technology, the industrial structure is becoming digitalize. The government selected big data as the key technology of the 4th industrial revolution. Among them, big data is widely used to create new values and services by utilizing vast amounts of information. In order to cultivate professional manpower for the use of big data, various education programs are provided at universities. We intend to develop a curriculum for systematic training of talented people who can acquire knowledge about the three stages of collection, analysis, and application of big data. To this end, subjects are classified into basic competency, technical competency, analysis competency, and business competency based on the big data competency model proposed by the Korea Internet & Security Agency.