• Title/Summary/Keyword: bifurcation and jump

Search Result 7, Processing Time 0.016 seconds

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 송덕근;최진권;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear phenomena.

  • PDF

Bifurcation Analysis of a Non-linear Hysteretic Oscillating System (비선형 히스테리시스 진동시스템의 분기해석)

  • 장서일;송덕근;최진권
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Three kinds of viscoelastic damper model, which has a non-linear spring as an element is studied analytically and numerically The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by a non-linear constitutive equation and an additional equation of motion. Harmonic balance method is applied to get analytical solutions of the system. The frequency-response curves sallow that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurrences of such non-linear Phenomena.

Postbuckling strength of an axially compressed elastic circular cylinder with all symmetry broken

  • Fujii, Fumio;Noguchi, Hirohisa
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.199-210
    • /
    • 2001
  • Axially compressed circular cylinders repeat symmetry-breaking bifurcation in the postbuckling region. There exist stable equilibria with all symmetry broken in the buckled configuration, and the minimum postbuckling strength is attained at the deep bottom of closely spaced equilibrium branches. The load level corresponding to such postbuckling stable solutions is usually much lower than the initial buckling load and may serve as a strength limit in shell stability design. The primary concern in the present paper is to compute these possible postbuckling stable solutions at the deep bottom of the postbuckling region. Two computational approaches are used for this purpose. One is the application of individual procedures in computational bifurcation theory. Path-tracing, pinpointing bifurcation points and (local) branch-switching are all applied to follow carefully the postbuckling branches with the decreasing load in order to attain the target at the bottom of the postbuckling region. The buckled shell configuration loses its symmetry stepwise after each (local) branch-switching procedure. The other is to introduce the idea of path jumping (namely, generalized global branch-switching) with static imperfection. The static response of the cylinder under two-parameter loading is computed to enable a direct access to postbuckling equilibria from the prebuckling state. In the numerical example of an elastic perfect circular cylinder, stable postbuckling solutions are computed in these two approaches. It is demonstrated that a direct path jump from the undeformed state to postbuckling stable equilibria is possible for an appropriate choice of static perturbations.

Control of chaotic dynamics by magnetorheological damping of a pendulum vibration absorber

  • Kecik, Krzysztof
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.743-754
    • /
    • 2014
  • Investigations of regular and chaotic vibrations of the autoparametric pendulum absorber suspended on a nonlinear coil spring and a magnetorheological damper are presented in the paper. Application of a semi-active damper allows controlling the dangerous motion without stooping of system and additionally gives new possibilities for designers. The investigations are curried out close to the main parametric resonance. Obtained numerical and experimental results show that the semi-active suspension may reduce dangerous motion and it also allows to maintain the pendulum at a given attractor or to jump to another one. Moreover, the results show that, for some parameters, MR damping may transit to chaotic motions.

Modelling and Analysis of a Vibrating System Incorporating a Viscoelastic Damper (비선형 점탄성 댐퍼를 포함한 진동시스템의 모델링 및 해석)

  • Yang, Seong-Young;Chang, Seo-Il;Kim, Sang-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.449-454
    • /
    • 2000
  • A three-parameter model of viscoelastic damper, which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by three-dimensional non-linear dynamical system of equations. The harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time integration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Non-linear Vibration of a System Incorporating a Hysteretic Damper (비선형 히스테리시스 댐퍼를 갖는 진동계의 해석)

  • 양성영;장서일;김상주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.531-535
    • /
    • 2000
  • A three-parameter model of viscoelastic damper which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time intergration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

정규모드 동역학을 활용한 비선형 진동

  • 박철희
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 1997
  • 물리계에서 일어나는 동적 현상들은 선형해석 만으로 설명하기에는 불충분한 점이 많이 있다. 이는 기계구조물과 같은 실제 계의 진동이 기하학적 비선형성, 강성 의 비선형성 또는 경계조건의 비선형성 등의 영향으로 비선형적인 거동을 하기 때문 이다. 비선형 진동을 하는 기계 계는 우리 주변에서 쉽게 찾아 볼 수 있는데, 그 예로써 진자운동을 포함하여 동흡진기, 회전체계, 공작기계의 절삭운동, 건마찰 (dry friction) 관련 기계장치, 치차 및 기차의 바퀴와 레일 간의 접촉에서 볼수 있는 구분적 선형(piecewise linear) 진동계, 충격 진동계 등을 들 수 있다. 비선형 진동 연구는 limit cycle, 준주기운동(quasiperiodic motion), 점프현상(jump phenomena) 등의 인식에서 시작되어, 과거에는 설명이 안되어 회피되 왔던 랜덤(random) 형태의 비주기운동에 대한 연구로 까지 발전하고 있다. 비선형 진동을 다루는데 있어서 정규모드(normal mode)를 이용하는 방법이 있다. 일반적으로 선형계는 선형 정규모드 (linear normal mode)가 존재하는 것과 같이 비선형계에도 이와 유사한 정규모드가 존재한다는 사실이 연구 보고된 바 있다. 비선형계에 존재하는 정규모드는 계의 매개 변수(system parameters)에 따라 그 안정성이 바뀔 수 있으며, 만일 안정한 정규모드 가 어떤 매개변수에서 그 안정성이 바뀐다면 선형이론으로는 설명될 수 없는 새로운 운동이 일어나고 이러한 운동을 분기모드(bifurcation mode)라고 한다. 안정한 정규 모드 및 분기모드를 포함하여 비선형계를 다류는 것을 "정규모드 동역학(normal mode dynamics)"이라고 한다. 정규모드 동역학은 앞에서 언급된 비선형 현상들의 원인규명, 예측, 안정성해석 및 강제진동 해석을 가능하게 한다. 또한 최근에 활발히 연구되고 있는 혼돈운동(chaotic motion)의 해석도 가능하다. 이 글에서는 비선형 진동해석을 위한 정규모드 동역학에 대한 연구동향 및 기본 이론을 살펴 보았고, 그 적용 예를 통하여 실험결과와 비교 고찰 함으로써 정규모드 동역학의 적용성을 서술하여 보았다. 선형이론으로 이해하기 어려운 현상들에 대하여는 비선형의 관점에서 새롭게 접근하 려는 노력이 필요하며 비선형 이론에 대한 연구가 지속적으로 진행되어야 한다. 진행되어야 한다.

  • PDF