• Title/Summary/Keyword: bicarbonate concentration

Search Result 145, Processing Time 0.031 seconds

THE IMPORTANCE OF BICARBONATE-BUFFER ON CARDIAC FUNCTION: Contractility, Membrane Potentials and ATP Content of Isolated Atria in the Absence of External Buffers (심장기능(心臟機能)에 미치는 Bicarbonate-Buffer의 중요성(重要性) : Buffer 제거(除去)에 의(依)한 유리심방(遊離心房)의 수축성(收縮性), 막전위(膜電位) 및 ATP 함량(含量)의 변동(變動))

  • Ko, Kye-Chang;Han, Dae-Sup;Jung, Jee-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.63-69
    • /
    • 1972
  • The effects of omission of buffers from Krebs-Ringer medium on contractile activity, membrane potentials and ATP content of electrically stimulated isolated rat atria were investigated. 1) Contractile status: A rapid and marked depression of the contractile activity of atria occurred when buffer-free medium was substituted for the normal Krebs-Ringer medium. 2) Electrical status: The omission of buffers from medium did not alter the resting or action potential magnitudes of atria. However, the action potential duration was on initial increase followed by a decrease in the buffer-free medium. 3) ATP concentration: The omission of buffers from medium resulted in a marked decrease in the ATP levels of atria. It has been also found in the present study that bicarbonate buffer plays an important role for the maintenance of the contractility and ATP levels of the heart. The contractile depression by the omission of buffers was not directly associated with electrical alterations in resting or action potentials of the heart. In the absence of bicarbonate-buffer, glucose no longer plays to maintain the contractile activity and the ATP levels of rat atria.

  • PDF

A Study on the Use of Oyster Shells for Phosphorus Removal (인 제거를 위한 패각의 활용법에 관한 연구)

  • Lee, Jong-Il;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2008
  • In our country, limiting nutrient is known as phosphorus in the most lakes. Therefore, the removal of phosphorus is a very important process in sewage treatment. However, many of the sewage treatment plants employ the conventional activated sludge process, known to remove $10{\sim}30%$ of phosphorus. Thus, additional phosphorous removal process will be needed. Oyster shells have been known to remove phosphorus in water. The removal efficiency of phosphorus was highest at smallest size of oyster shells and at the highest pH for batch test. The phosphorous removal rate with various calcium concentrations was increased by increasing calcium concentration. At the 20 mg/l of calcium, more than 90% of phosphorous was removed in two hours. The removal efficiency of phosphorous was increased greatly at 300% of recirculation rate. With 300% of recirculation rate, the removal efficiency reached 80% at pH 11. The negative effects of bicarbonate on crystallization were observed in oyster shells. The effects of bicarbonate on rate constant were also investigated by applying these results to experimental equation. The rate constant was decreased at the inverse logarithm bicarbonate concentration.

  • PDF

Inhibition of Rebar Corrosion by Carbonate and Molybdate Anions

  • Tan, Y.T.;Wijesinghe, S.L.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • Bicarbonate/carbonate and molybdate anions have been characterized for their inhibitive effect on pitting corrosion of carbon steel in simulated concrete pore solution by using electrochemical tests such as electrochemical impedance (EIS) and linear polarization (LP). It was revealed that bicarbonate/carbonate has a weak inhibitive effect on pitting corrosion that is approximately one order of magnitude lower compared to hydroxide. Molybdate is effective against pitting corrosion induced by the concentration of chloride as low as 113 mM and can increase the pitting potential of a previously pitted sample to the oxygen evolution potential by the concentration of molybdate as much as 14.6 mM only. The formation of a $CaMoO_4$ film on the surface hinders the reduction of dissolved oxygen on the steel surface, reducing corrosion potential and increasing the safety margin between corrosion potential and pitting potential further. In addition, pore-plugging by $FeMoO_4$ as a type of salt film within pits increases the likelihood of repassivation.

Effect of bicarbonate concentration on iron biomineralization by psychrotolerant bacteria

  • Lee, Sang-Han;Yul-Roh;Lee, Insung
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.236-236
    • /
    • 2003
  • Anaerobic Fe(III)-reducing bacteria are known to be able to reduce crystalline and amorphous Fe(III) oxides. Anaerobic Fe(III)-reducing bacterial reduction can induce several kinds of secondary minerals (Fe(II) containing minerals) such as magnetite, siderite, vivianite [($Fe_{3}(PO_{4}{\cdot}2H_{2}O$], and iron sulfide (FeS) according to variety of geochemical and biological conditions. (omitted)

  • PDF

The effect of acid and alkali treatment on extracting nutrients from beef bone (소의 사골(四骨) 중(中)의 영양성분 용출에 대한 산, 알카리 처리효과)

  • Park, Dong Yean;Lee, Yeon Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.2
    • /
    • pp.146-149
    • /
    • 1983
  • An experiment was made to investigate the effect of acid and alkali treatments obfserving the amount of nutrients especially calcium(Ca), phosphorus(P), ${\alpha}$-amino nitrogen(${\alpha}$-amino N), and total nitrogen(total-N)which were extracted from beef bone. 0~0.8% acetic acid and 0~0.5% sodium bicarbonate were used for treatment on different levels. The results are as follows; In case of acid treatment, Ca and P contents in bone stock wer observed to increase significantly according to acid concentration. Ca and P contents in bone stock highly incrased especially when the acid concentration was above 0.3%. Ca and P ratio varied from one to two when the acid concentration was below 0.01%. However contents of ${\alpha}$-amino N and total-N increased significantly when acid concentration was above 0.5%. In case of alkali treatment, contents of Ca and P did not increased significantly on all levels of sodium bicarbonate. The content of ${\alpha}$-amino N, however, increased significantly when the alkali concentration was in 0.05% but total-N did not show any variation in amount. These results suggest that acid treatment can give rise to an increase of the amount of nutrients which are extracted from beef bone but alkali treatment does not.

  • PDF

FTIR Analysis of the Aqueous Solutions of Urea and Ammonium Carbamate(AC) (요소와 암모니움 카바메이트 수용액의 FTIR 분석)

  • Byun, Hong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.657-661
    • /
    • 1994
  • A method to analyse the concentration of mixture (AC/urea) and the concentration of urea or AC alone was developed. In this study, the decomposition of AC solution to ammonium bicarbonate was suppressed by using of 15% w/v ammonia as a solvent and the error of equilibrium point was maintained less than 1 %. Strong peaks at $1600cm^{-1}$ for urea and at $1405cm^{-1}$ for AC, corresponding to the N-H bending and symmetric carboxylate ion stretch were used to construct calibration graph and equations for the measurement of concentration. The errors of calculated concentration were ${\pm}0.1%$ w/v for AC and ${\pm}0.3%$ w/v for urea.

  • PDF

Effects of sodium bicarbonate as an inorganic carbon source on the growth of scenedesmus dimorphus (무기탄소원으로서의 NaHCO3가 미세조류 Scenedesmus dimorphus의 성장에 미치는 영향 평가)

  • Joo, Sung-Jin;Zhang, Shan;Choi, Kyoung Jin;Lee, SeokMin;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.555-560
    • /
    • 2014
  • This study investigates the effect of sodium bicarbonate ($NaHCO_3$) on growth of S.dimorphus. $NaHCO_3$ concentration was varied from 0 to 2 g-C/L. As a result, the increase in concentration of $NaHCO_3$ up to 1.5 g-C/L increased dry weight of algae. The highest specific growth rate of S. dimorphus was $0.36day^{-1}$ which was obtained at concentration of 0.5 g-C/L $NaHCO_3$. pH showed a large variation range at the concentrations lower than 0.5 g-C/L $NaHCO_3$ whereas inorganic carbon, nitrate and phosphorus removal rates were almost same at the concentrations higher than 0.5 g-C/L $NaHCO_3$ (0.75, 1, 1.25, 1.5, 2 g-C/L $NaHCO_3$). Their average inorganic carbon, nitrate and phosphorus removal rate were 70 mg-C/L/d, 11.3 mg-N/L/d, and 1.6 mg-P/L/d, respectively. Thus, $NaHCO_3$ didn't effect on inorganic carbon, nitrate and phosphorus removal rate of S. dimorphus.

Effect of Other Medications on the Stability of Omeprazole in Aqueous Solution for the Peptic Ulcer Disease (소화성궤양시 병용약물이 수용액 중의 오메프라졸 안정성에 미치는 영향)

  • Lee, Young-Jae;Whang, Wan-Kyunn;Cho, Seong-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3494-3499
    • /
    • 2009
  • The stability of omeprazole in the aqueous solutions containing loxoprofen or Sodium bicarbonate was examined at room temperature. Loxoprofen or Sodium bicarbonate (60 mg) was added to omeprazole (600 ${\mu}g$/ml) solution to check the stability profile. Then, the solution was kept at room temperature for 80 hours. The concentration was assayed at each concentration by stability-indicating High performance liquid chromatography (HPLC) method. Aliquots of the solution were withdrawn at specified time intervals and assayed by chromatographic analysis for intact omeprazole. The relation between omeprazole concentration and peak area was linear from 5 to 160 ${\mu}g$/ml. The analysis method was precise with relative standard deviation (% RSD) no greater than 3.05 %. The remaining percentage-time curves revealed that omeprazole was degraded rapidly as functions of time and temperature following pseudo first-order kinetics. In conclusion, the stability of omeprazole was significantly affected by liquid solutions mixed with alkalizer (Sodium carbonate) or the NSAIDs (loxoprofen).

An Optical-Density-Based Feedback Feeding Method for Ammonium Concentration Control in Spirulina platensis Cultivation

  • Bao, Yilu;Wen, Shumei;Cong, Wei;Wu, Xia;Ning, Zhengxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.967-974
    • /
    • 2012
  • Cultivation of Spirulina platensis using ammonium salts or wastewater containing ammonium as alternative nitrogen sources is considered as a commercial way to reduce the production cost. In this research, by analyzing the relationship between biomass production and ammonium-N consumption in the fed-batch culture of Spirulina platensis using ammonium bicarbonate as a nitrogen nutrient source, an online adaptive control strategy based on optical density (OD) measurements for controlling ammonium feeding was presented. The ammonium concentration was successfully controlled between the cell growth inhibitory and limiting concentrations using this OD-based feedback feeding method. As a result, the maximum biomass concentration (2.98 g/l), productivity (0.237 g/l d), nitrogen-to-cell conversion factor (7.32 gX/gN), and contents of protein (64.1%) and chlorophyll (13.4mg/g) obtained by using the OD-based feedback feeding method were higher than those using the constant and variable feeding methods. The OD-based feedback feeding method could be recognized as an applicable way to control ammonium feeding and a benefit for Spirulina platensis cultivations.

Design and Evaluation of Portable Forward Osmosis Desalination Device (휴대용 정삼투 담수화 장치의 설계 및 평가에 관한 연구)

  • Park, Chul-Woo;Kang, Ho;Jung, Dongho;Cha, Jaechul;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.301-305
    • /
    • 2013
  • This study aims to design a portable desalination device and discusses the feasibility of the device for overcoming a shortage of safe drinking water. A low-energy, self-supporting, and portable desalination device is designed based on forward osmosis (FO) using an ammonium bicarbonate solution. Experiments with various concentrations of ammonium bicarbonate solution and sodium chloride solution showed that the portable desalination device's performance such as volume and flow rate of desalting water and time required satisfied drinking water standards. The device performance is controlled by varying the concentration and temperature of the solution.