• Title/Summary/Keyword: biaxial accelerometer

Search Result 6, Processing Time 0.018 seconds

Biaxial Accelerometer-based Magnetic Compass Module Calibration and Analysis of Azimuth Computational Errors Caused by Accelerometer Errors (2 축 가속도계 기반 지자기 센서 모듈의 교정 및 가속도계 오차에 의한 방위각 계산 오차 분석)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • A magnetic compass module must be calibrated accurately before use. Moreover, the calibration process must be performed taking into account any magnetic dip if the magnetic compass module has tilt angles. For this, a calibration method for a magnetic compass module is explained. Tilt error of the magnetic compass module is compensated using a biaxial accelerometer generally. The accelerometer error causes a tilt angle calculation error that gives rise to an azimuth calculation error. For error property analysis, error equations are derived and simulations are performed. In the simulation results, the accuracy of derived error equations is verified. If a biaxial magnetic compass module is used instead of a triaxial one, the magnetic dip and z-axis magnetic compass data must be estimated for tilt compensation. Lastly, estimation equations for the magnetic dip and z-axis magnetic compass data are derived, and the performance of the equations is verified based on a simulation.

Modeling of Normal Gait Acceleration Signal Using a Time Series Analysis Method (시계열 분석을 이용한 정상인의 보행 가속도 신호의 모델링)

  • Lim Ye-Taek;Lee Kyoung-Joung;Ha Eunho;Kim Han-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.462-467
    • /
    • 2005
  • In this paper, we analyzed normal gait acceleration signal by time series analysis methods. Accelerations were measured during walking using a biaxial accelerometer. Acceleration data were acquired from normal subjects(23 men and one woman) walking on a level corridor of 20m in length with three different walking speeds. Acceleration signals were measured at a sampling frequency of 60Hz from a biaxial accelerometer mounted between L3 and L4 intervertebral area. Each step signal was analyzed using Box-Jenkins method. Most of the differenced normal step signals were modeled to AR(3) and the model didn't show difference for model's orders and coefficients with walking speed. But, tile model showed difference with acceleration signal direction - vertical and lateral. The above results suggested the proposed model could be applied to unit analysis.

Design of Digital Inclinometer for Measuring Postural Balance (자세 균형 측정을 위한 디지털 경사계 설계)

  • Myoung, Hyoun-Seok;Lee, Hyo-Ki;Kwon, Oh-Yun;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.50-56
    • /
    • 2008
  • In this paper, a digital inclinometer to measure the angle and acceleration signals of subject laid on Roll was designed. The designed system consists of a tilt sensor, biaxial accelerometer, single chip microprocessor and Bluetooth module. The designed digital inclinometer was easy to handle and to wear. To evaluate the performance of the system, we measured simultaneously the angle and acceleration signals from the 3 subjects on the Roll using two instruments which are ZEBRIS and designed system. The measured signals were processed by statistical method and then the correlation coefficient of 0.93 was shown. From the results, the designed digital inclinometer is shown to be useful in assessment of body movement.

Development of Gait Analysis Algorithm for Hemiplegic Patients based on Accelerometry (가속도계를 이용한 편마비 환자의 보행 분석 알고리즘 개발)

  • 이재영;이경중;김영호;이성호;박시운
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.55-62
    • /
    • 2004
  • In this paper, we have developed a portable acceleration measurement system to measure acceleration signals during walking and a gait analysis algorithm which can evaluate gait regularity and symmetry and estimate gait parameters automatically. Portable acceleration measurement system consists of a biaxial accelerometer, amplifiers, lowpass filter with cut-off frequency of 16Hz, one-chip microcontroller, EEPROM and RF(TX/RX) module. The algerian includes FFT analysis, filter processing and detection of main peaks. In order to develop the algorithm, eight hemiplegic patients for training set and the other eight hemiplegic patients for test set are participated in the experiment. Acceleration signals during 10m walking were measured at 60 samples/sec from a biaxial accelerometer mounted between L3 and L4 intervertebral area. The algorithm, detected foot contacts and classified right/left steps, and then calculated gait parameters based on these informations. Compared with video data and analysis by manual, algorithm showed good performance in detection of foot contacts and classification of right/left steps in test set perfectly. In the future, with improving the reliability and ability of the algerian so that calculate more gait Parameters accurately, this system and algerian could be used to evaluate improvement of walking ability in hemiplegic patients in clinical practice.

A Systematic Review on Accelerometer to Measure Activity of Daily Living of Patients with Stroke (뇌졸중 환자의 일상생활활동 평가도구인 가속도계에 대한 체계적 고찰)

  • Lee, Joo-Hyun;Park, Jin-Hyuck;Kim, Yeonju;Park, Hae Yean;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.5 no.2
    • /
    • pp.57-69
    • /
    • 2016
  • Objective: The purpose of this study was to systematically review the articles using accelerometer to measure activity of daily living of patients with stroke. Methods: Depending on selection criteria, 13 studies were searched for PubMed, EMBASE, and Cochrane library database from February 2014 to March 2014. A total of 331 papers were searched, and 13 of these were selected. Results: In studies of 13 selected, acute, subacute, and chronic patients with stroke were enrolled. The kind of accelerometer was uniaxial, biaxial, and triaxial, activity monitor. Measurement activities were mainly arm activity, walking activity, and attachment sites were also various depending on the measurement activities. A measured variable was the total number of activities, the movement speed of the patients, ratio between affected and non-affected, and motion analysis. The result indicated that significant correlation with the other assessment tools in all studies. Conclusions: Accelerometer will be applied with a tool for measuring activity of daily living of patients with stroke, depending on activities characteristics. Further, we need accelerometer studies to apply with a variety of assessment in clinical practice or community settings.

Design and Evaluation of Digital Inclinometer for Measuring Postural Balance (자세 균형 측정을 위한 디지털 경사계 설계 및 평가)

  • Myoung, Hyoun-Seok;Lee, Hyo-Ki;Lee, Kyoung-Joung;Kwon, Oh-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.64-66
    • /
    • 2007
  • In this paper, a digital inclinometer to measure the angle and acceleration signals of subject laid on Roll was designed. The designed system consists of a tilt sensor, biaxial accelerometer, microcontroller and BlueTooth module. The designed digital inclinometer was easy to handle and easy to wear. To evaluate the performance of the system, we measured simultaneously the angle and acceleration signals from the 3 subjects on the Roll with two instruments which are ZEBRIS and our system. The measured signals were processed by statistical method and then the correlation coefficient of 0.93 was shown. From the results, the designed digital inclinometer is shown to be useful in assessment of body movement.

  • PDF