• Title/Summary/Keyword: bias field

Search Result 726, Processing Time 0.032 seconds

Analytic Model of Spin-Torque Oscillators (STO) for Circuit-Level Simulation

  • Ahn, Sora;Lim, Hyein;Shin, Hyungsoon;Lee, Seungjun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Spin-torque oscillators (STO) is a new device that can be used as a tunable microwave source in various wireless devices. Spin-transfer torque effect in magnetic multilayered nanostructure can induce precession of magnetization when bias current and external magnetic field are properly applied, and a microwave signal is generated from that precession. We proposed a semi-empirical circuit-level model of an STO in previous work. In this paper, we present a refined STO model which gives more accuracy by considering physical phenomena in the calculation of effective field. Characteristics of the STO are expressed as functions of external magnetic field and bias current in Verilog-A HDL such that they can be simulated with circuit-level simulators such as Hspice. The simulation results are in good agreement with the experimental data.

Effect of Threshold on the Comparison of Radar and Rain Gauge Rain Rate (레이더 강우와 지상강우 비교에 대한 임계값의 영향 평가)

  • Yoon, Jungsoo;Ha, Eunho;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.522-522
    • /
    • 2015
  • In this study, the effect of threshold applied to the radar rain rate on the comparison of the radar and rain gauge rain rate was theoretically examined. The result derived was also evaluated theoretically, using the Bernoulli random field, and empirically, using Mt. Kwanak weather radar data. The results are summarized as follows. (1) In the application to the Bernoulli random field, it was found that the comparison of the radar and rain gauge rain rate with threshold does not introduce any systematic bias. (2) The same results could also be derived in the application to Mt Kwanak weather radar data. In all cases with several radar bin sizes and thresholds considered, the bias was estimated to be far less than 10% of the mean of the rain gauge rain rate. (3) However, in the comparison with threshold applied to both the radar and rain gauge rain rate, the bias was estimated to be higher than 20%. That is, the systematic bias was introduced. This result indicates that the comparison with threshold applied to both the radar and rain gauge rain rate should not be used.

  • PDF

An empirical study on the relationship of personal optimistic bias and information security awareness and behavior in the activity of information ethics (정보윤리 활동에서 개인의 낙관적 편견과 정보보안 인식 및 정보보안 행위와의 관련성에 관한 실증 연구)

  • Choi, Jong-Geun;Che, Myung-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.538-547
    • /
    • 2016
  • With respect to the factors affecting information security awareness and behavior, the study of the relevance of the concept of optimistic bias is actively used in psychology. In other words, this study examines whether the optimistic bias of individuals affects information security in the field. In this sense, this study attempted to demonstrate the relevance of optimistic bias in information security behavior and awareness. A questionnaire survey was conducted targeting 111 people engaged in domestic private enterprises. The survey results showed that this personalized optimistic bias exists because of empirical factors related to personal security. Optimistic bias affects the security awareness information. The greater the optimistic bias, the lower the awareness and recognition of information security. In other words, optimistic bias affects information security awareness. Reducing the effects of optimistic bias is expected to reduce information security incidents, such as information leakages. However, the variety of information related ethical activities of a company did not have any effect on the information security awareness. Most previous studies have only examined the effect optimistic bias in the field of health. Therefore, this study fills an important gap in research in IT.

Temperature dependence of exchange bias in Co/Ni anti-dot arrays

  • Seo, M.S.;Deshpande, N.G.;Lee, S.J.;Lee, Y.P.;Rhee, J.Y.;Kim, K.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.436-436
    • /
    • 2011
  • Recently, spintronic devices with submicron structures are widely investigated to take advantage of their unique micromagnetic properties. In this work, we study the temperature dependence of exchange bias in bilayer anti-dot arrays made by depositing Co (40 nm)/Ni (5 nm) ferromagnetic bilayer on Si substrate to form anti-dot arrays with a diameter $1{\mu}m$. The anti-dot patterning was done only for the upper Co layer, while the Ni underlayer was kept unperforated. The temperature dependences of magnetoresistance (MR) and exchange bias were studied along magnetic easy and hard axes. The in-plane MR measurements were performed using a physical-property measurement system (PPMS ; Quantum Design Inc.) at various temperatures. The standard in-line four-point probe configuration was used for the electrical contacts. As temperature was varied, the MR data were obtained in which in-plane field (H=3 kOe) was applied in the directions along the hard and the easy axes with respect to the lattice plane. The temperature dependences of magnetic anisotropy and exchange bias were also studied along the magnetic easy and hard axes. As temperature decreases, the single peak splits into two peaks. While no exchange bias was observed along the magnetic easy axis, the exchange bias field steadily increased with decreasing temperature along the magnetic hard axis. These results were interpreted in connection with the magnetic anisotropy and the effect of the anti-dots in pinning domain wall motion along the respective direction.

  • PDF

Magnetization Process in Vortex-imprinted Ni80Fe20/Ir20Mn80 Square Elements

  • Xu, H.;Kolthammer, J.;Rudge, J.;Girgis, E.;Choi, B.C.;Hong, Y.K.;Abo, G.;Speliotis, Th.;Niarchos, D.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.83-87
    • /
    • 2011
  • The vortex-driven magnetization process of micron-sized, exchange-coupled square elements with composition of $Ni_{80}Fe_{20}$ (12 nm)/$Ir_{20}Mn_{80}$ (5 nm) is investigated. The exchange-bias is introduced by field-cooling through the blocking temperature (TB) of the system, whereby Landau-shaped vortex states of the $Ni_{80}Fe_{20}$ layer are imprinted into the $Ir_{20}Mn_{80}$. In the case of zero-field cooling, the exchange-coupling at the ferromagnetic/antiferromagnetic interface significantly enhances the vortex stability by increasing the nucleation and annihilation fields, while reducing coercivity and remanence. For the field-cooled elements, the hysteresis loops are shifted along the cooling field axis. The loop shift is attributed to the imprinting of displaced vortex state of $Ni_{80}Fe_{20}$ into $Ir_{20}Mn_{80}$, which leads to asymmetric effective local pinning fields at the interface. The asymmetry of the hysteresis loop and the strength of the exchange-bias field can be tuned by varying the strength of cooling field. Micromagnetic modeling reproduces the experimentally observed vortex-driven magnetization process if the local pinning fields induced by exchange-coupling of the ferromagnetic and antiferromagnetic layers are taken into account.

The Analysis of Drop-On-Demand Characteristic of Electrostatic Field Induced Inkjet Head System with Carbon Nano Tube (CNT) Ink (정전기장 유도된 잉크젯 프린터 헤드를 이용한 탄소나노튜브 잉크의 Drop-On-Demand 특성 연구)

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Byun, D.Y.;Ko, H.S.;Lee, S.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1445-1449
    • /
    • 2007
  • This paper presents the DOD (Drop-On-Demand) characteristic using the electrostatic field induced inkjet printing system. In order to achieve the DOD characteristic of electrostatic field induced inkjet printing, applied the bias voltage of 1.4 kV and the pulse voltage of $2.0\;kV\;{\sim}\;2.7\;kV$ using high voltage pulse generator. Electrostatic field induced droplet ejection is directly observed using a high-speed camera and for investigated DOD characteristic, CNT ink used. The electrostatic field induced inkjet head system has DOD characteristic using pulse generator which can be applied pulse voltage. The bias voltage has a good condition which form meniscus and has micro dripping mode for small size micro droplet. Also, the droplet size decreases with increasing the applied pulse voltage. This paper shows DOD characteristic at electrostatic field induced inkjet head system, Therefore. electrostatic DOD inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

A study on electroreflectance in undoped n-GaAs (불순물이 첨가되지 않은 n-GaAs에서의 Electroreflectance에 관한 연구)

  • 김인수;김근형;손정식;이철욱;배인호;김상기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.136-142
    • /
    • 1997
  • An/n-GaAs(100) Schottky barrier diode has been investigated by using electoreflectance(ER). From the observed Franz-Keldysh oscillatins(FKO), the internal electric field(Ei) of the sample is $5.76\times 10^{4}$V/cm at 300 K. As the modulation voltage($V_{ac}$) IS changed, the line shape of ER signal does not change but its amplitude various linerly. For increasing forward and reverse dc bias boltage($V_{bias}$), the amplitude of ER signal decreases. The internal electric field decreased from $19.3\times 10^4\sim4.39\times10^4$V/cm as $V_{bias}$ INCREASES FROM -5.0 V TO 0.6 V. For Au/n-GaAs the valve of built-in voltage($V_{bi}$) determined from the plot of $V_{bias}$ versus $E_i^2$ is 0.70 V. This value agrees with that observed in the plot of $V_{bias}$ versus amplitude of FKO peak. In addition, the carrier concentraion(N) and potential barrier($\Phi$) of the sample at 300 K are found to be about $2.4\times 10^{16}\textrm{cm}^{-3}$ and 0.78 eV, respectively.

  • PDF

Nonuniformity Correction Scheme Based on 3-dimensional Visualization of MRI Images (MRI 영상의 3차원 가시화를 통한 영상 불균일성 보정 기법)

  • Kim, Hyoung-Jin;Seo, Kwang-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.948-958
    • /
    • 2010
  • Human body signals collected by the MRI system are very weak, such that they may be easily affected by either external noise or system instability while being imaged. Therefore, this paper analyzes the nonuniformity caused by a design of the RF receiving coil in a low-magnetic-field MRI system, and proposes an efficient method to improve the image uniformity. In this paper, a method for acquiring 3D bias volume data by using phantom data among various methods for correcting such nonuniformity in MRI image is proposed, such that it is possible to correct various-sized images. It is shown by simulations that images obtained by various imaging methods can be effectively corrected using single bias data.

Electrical Characteristics of Thin Film Transistor According to the Schottky Contacts (쇼키컨텍에 의한 박막형 트랜지스터의 전기적 특성)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.135-139
    • /
    • 2014
  • To obtain the transistor with ambipolar transfer characteristics, IGZO/SiOC thin film transistor was prepared on SiOC with various polarities as a gate insulator. The interface between a channel and insulator showed the Ohmic and Schottky contacts in the bias field of -5V ~ +5V. These contact characteristics depended on the polarities of SiOC gate insulators. The transfer characteristics of TFTs were observed the Ohmic contact on SiOC with polarity, but Schottky contact on SiOC with low polarity. The IGZO/SiOC thin film transistor with a Schottky contact in a short range bias electric field exhibited ambipolar transfer characteristics, but that with Ohmic contact in a short range electric field showed unipolar characteristics by the trapping phenomenon due to the trapped ionized defect formation.

Study on the Improvement of Exchange Bias and Magnetoresistance in Co/Cu/Co/FeMn Spin Valve by Heat Treatment (Co/Cu/Co/FeMn 스핀밸브의 자기저항 특성 향상 연구)

  • Kim, Hong-Jin;Bae, Jun-Soo;Noh, Eun-Sun;Lee, Taek-Dong;Lee, Hyuck-Mo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • It was observed that exchange bias field was increased with smooth surface and better ${\gamma}$-FeMn formation. Sputtering conditions were varied for the control of the surface roughness and ${\gamma}$-FeMn formation. From the results of Cu deposition as underlayer, it was found that ${\gamma}$-FeMn formation was closely related with the thickness of underlayer. After heat treatment, exchange bias field was increased over three times. This improvement was likely that the crystallites of ${\gamma}$-FeMn were well formed. In Co/Cu/Co/FeMn spin valve structure, magnetoresistance was increased over 1.4 times through the heat treatment. This was due to the disappearance of Co/Cu intermixed dead layer and removal of defect, and this was examined by AES analysis.