• Title/Summary/Keyword: bias error

Search Result 797, Processing Time 0.03 seconds

Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals (위성항법 신호 이중주파수간 편이 추정오차 분석)

  • Kim, Jeongrae;Noh, Jeong Ho;Lee, Hyung Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.

Restricted Mixture Designs for Three Factors

  • Nae K. Sung;Park, Sung H.
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.145-172
    • /
    • 1980
  • Draper and Lawrence (1965a) have given mixture designs for three factors when all the mixture components can vary on the entire factor space so that the region of interest is an equilateral triangle in two dimensions. In this paper their work is extended to the cases when the region of interest is an echelon, parallelogram, pentagon or hexagon, because of the restirctions imposed on some or all of the mixture components. The principles used in the choice of appropriate designs are those originally introduced by Box and Draper(1959). It is assumed that a response surface equation of first order is fitted, but there is a possibility of bias error due to presence of second order terms in the true model. Minimum bias designs for several cases of restricted regions of interest are illustrated.

  • PDF

The Analysis of Changma Structure using Radiosonde Observational Data from KEOP-2007: Part I. the Assessment of the Radiosonde Data (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석: Part I. 라디오존데 관측 자료 평가 분석)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.213-226
    • /
    • 2009
  • In order to investigate the characteristics of Changma over the Korean peninsula, KEOP-2007 IOP (Intensive Observing Period) was conducted from 15 June 2007 to 15 July 2007. KEOP-2007 IOP is high spatial and temporal radiosonde observations (RAOB) which consisted of three special stations (Munsan, Haenam, and Ieodo) from National Institute of Meteorological Research, five operational stations (Sokcho, Baengnyeongdo, Pohang, Heuksando, and Gosan) from Korea Meteorological Administration (KMA), and two operational stations (Osan and Gwangju) from Korean Air Force (KAF) using four different types of radiosonde sensors. The error statistics of the sensor of radiosonde were investigated using quality control check. The minimum and maximum error frequency appears at the sensor of RS92-SGP and RS1524L respectively. The error frequency of DFM-06 tends to increase below 200 hPa but RS80-15L and RS1524L show vice versa. Especially, the error frequency of RS1524L tends to increase rapidly over 200 hPa. Systematic biases of radiosonde show warm biases in case of temperature and dry biases in case of relative humidity compared with ECMWF (European Center for Medium-Range Weather Forecast) analysis data and precipitable water vapor from GPS. The maximum and minimum values of systematic bias appear at the sensor of DFM-06 and RS92-SGP in case of temperature and RS80-15L and DFM-06 in case of relative humidity. The systematic warm and dry biases at all sensors tend to increase during daytime than nighttime because air temperature around sensor increases from the solar heating during daytime. Systematic biases of radiosonde are affected by the sensor type and the height of the sun but random errors are more correlated with the moisture conditions at each observation station.

Integrated Navigation System Design of Electro-Optical Tracking System with Time-delay and Scale Factor Error Compensation

  • Son, Jae Hoon;Choi, Woojin;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • In order for electro-optical tracking system (EOTS) to have accurate target coordinate, accurate navigation results are required. If an integrated navigation system is configured using an inertial measurement unit (IMU) of EOTS and the vehicle's navigation results, navigation results with high rate can be obtained. Due to the time-delay of the navigation results of the vehicle in the EOTS and scale factor errors of the EOTS IMU in high-speed and high dynamic operation of the vehicle, it is much more difficult to have accurate navigation results. In this paper, an integrated navigation system of EOTS which compensates time-delay and scale factor error is proposed. The proposed integrated navigation system consists of vehicle's navigation system which provides time-delayed navigation results, an EOTS IMU, an inertial navigation system (INS), an augmented Kalman filter and integration Kalman filter. The augmented Kalman filter outputs navigation results, in which the time-delay of the vehicle's navigation results is compensated. The integration Kalman filter estimates position, velocity, attitude error of the EOTS INS and accelerometer bias, accelerometer scale factor error, gyro bias and gyro scale factor error from the difference between the output of the augmented Kalman filter and the navigation result of the EOTS INS. In order to check performance of the proposed integrated navigation system, simulations for output data of a measurement generator and land vehicle experiments were performed. The performance evaluation results show that the proposed integrated navigation system provides more accurate navigation results.

Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion (GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선)

  • Song, Ha-Ryong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.47-56
    • /
    • 2015
  • In the multi-sensor system, sensor registration errors such as a sensor bias must be corrected so that the individual sensor data are expressed in a common reference frame. If registration process is not properly executed, large tracking errors or formation of multiple track on the same target can be occured. Especially for launch vehicle tracking system, each multiple observation lies on the same reference frame and then fused trajectory can be the best track for slaving data. Hence, this paper describes an on-line bias estimation/correction and asynchronous sensor fusion for launch vehicle tracking. The bias estimation architecture is designed based on pseudo bias measurement which derived from error observation between GPS and radar measurements. Then, asynchronous sensor fusion is adapted to enhance tracking performance.

Quantitative Analysis of Bayesian SPECT Reconstruction : Effects of Using Higher-Order Gibbs Priors

  • S. J. Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • In Bayesian SPECT reconstruction, the incorporation of elaborate forms of priors can lead to improved quantitative performance in various statistical terms, such as bias and variance. In particular, the use of higher-order smoothing priors, such as the thin-plate prior, is known to exhibit improved bias behavior compared to the conventional smoothing priors such as the membrane prior. However, the bias advantage of the higher-order priors is effective only when the hyperparameters involved in the reconstruction algorithm are properly chosen. In this work, we further investigate the quantitative performance of the two representative smoothing priors-the thin plate and the membrane-by observing the behavior of the associated hyperparameters of the prior distributions. In our experiments we use Monte Carlo noise trials to calculate bias and variance of reconstruction estimates, and compare the performance of ML-EM estimates to that of regularized EM using both membrane and thin-plate priors, and also to that of filtered backprojection, where the membrane and thin plate models become simple apodizing filters of specified form. We finally show that the use of higher-order models yields excellent "robustness" in quantitative performance by demonstrating that the thin plate leads to very low bias error over a large range of hyperparameters, while keeping a reasonable variance. variance.

  • PDF

Bias-Aware Numerical Surface Temperature Prediction System in Cheonsu Bay during Summer and Sensitivity Experiments (편향보정을 고려한 수치모델 기반 여름철 천수만 수온예측시스템과 예측성능 개선을 위한 민감도 실험)

  • Young-Joo Jung;Byoung-Ju Choi;Jae-Sung Choi;Sung-Gwan Myoung;Joon-Young Yang;Chang-Hoon Han
    • Ocean and Polar Research
    • /
    • v.46 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • A real-time numerical prediction system was developed to predict sea surface temperature (SST) in Cheonsu Bay to minimize damages caused by marine heatwaves. This system assimilated observation data using an ensemble Kalman filter and produced 7-day forecasts. Bias in the temperature forecasts were corrected based on observed data, and the bias-corrected predictions were evaluated against observations. Using this real-time numerical prediction system, daily SSTs were predicted in real-time for 7 days from July to August 2021. The forecasted SSTs from the numerical model were adjusted using observational data for bias correction. To assess the accuracy of the numerical prediction system, real-time hourly surface temperature observations as well as temperature and salinity profiles observed along two meridional sections within Cheonsu Bay were compared with the numerical model results. The root mean square error (RMSE) of the forecasted temperatures was 0.58℃, reducing to 0.36℃ after bias-correction. This emphasizes the crucial role of bias correction using observational data. Sensitivity experiments revealed the importance of accurate input of freshwater influx information such as discharge time, discharge volume, freshwater temperature in predicting real-time temperatures in coastal ocean heavily influenced by freshwater discharge. This study demonstrated that assimilating observational data into coastal ocean numerical models and correcting biases in forecasted SSTs can improve the accuracy of temperature prediction. The prediction methods used in this study can be applied to temperature predictions in other coastal areas.

An Empirical Study of the Recovery Experiment in Clinical Chemistry (임상화학검사실에서 회수율 실험의 실증적 연구)

  • Chang, Sang-Wu;Lee, Sang-Gon;Song, Eun-Young;Park, Yong-Won;Park, Byong-Ok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.184-188
    • /
    • 2006
  • The purpose of the recovery experiment in clinical chemistry is performed to estimate proportional systematic error. We must know all measurements have some error margin in measuring analytical performance. Proportional systematic error is the type of error whose magnitude increases as the concentration of analyte increases. This error is often caused by a substance in the sample matrix that reacts with the sought for analyte and therefore competes with the analytical reagent. Recovery experiments, therefore, are used rather selectively and do not have a high priority when another analytical method is available for comparison purposes. They may still be useful to help understand the nature of any bias revealed in the comparison of kit experiments. Recovery should be expressed as a percentage because the experimental objective is to estimate proportional systematic error, which is a percentage type of error. Good recovery is 100.0%. The difference between 100 and the observed recovery(in percent) is the proportional systematic error. We calculated the amount of analyte added by multiplying the concentration of the analyte added solution by the dilution factor(mL standard)/(mL standard + mL specimen) and took the difference between the sample with addition and the sample with dilution. When making judgments on method performance, the observed that the errors should be compared to the defined allowable error. The average recovery needs to be converted to proportional error(100%/Recovery) and then compared to an analytical quality requirement expressed in percent. The results of recovery experiments were total protein(101.4%), albumin(97.4%), total bilirubin(104%), alkaline phosphatase(89.1%), aspartate aminotransferase(102.8), alanine aminotransferase(103.2), gamma glutamyl transpeptidase(97.6%), creatine kinase(105.4%), lactate dehydrogenase(95.9%), creatinine(103.1%), blood urea nitrogen(102.9%), uric acid(106.4%), total cholesterol(108.5), triglycerides(89.6%), glucose(93%), amylase(109.8), calcium(102.8), inorganic phosphorus(106.3%). We then compared the observed error to the amount of error allowable for the test. There were no items beyond the CLIA criterion for acceptable performance.

  • PDF

A Study on the Error Analysis and Performance Improvement of Low-Cost Inertial Sensors (저급 관성센서의 오차 분석 및 성능 향상에 관한 연구)

  • 박문수;원종훈;홍석교;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.28-28
    • /
    • 2000
  • Low-cost solid-state inertial sensors of three rate Gyroscopes and a triaxial Accelerometer are evaluated in static and dynamic environments. As a interim result, error models of each inertial sensors are generated. Model parameters with respect to temperature are acquired in static environment. These error models are included in an Extended Kalman Filter(EKF) to compensate bias error due to temperature variation. Experimental results in dynamic environment are included to show the validity of the each error model and the performance improvement of a compensated low cost inertial sensors for a navigational application

  • PDF

Application of robust fault detection method for uncertain systms to diesel engine system (불확실성을 고려한 디젤엔진의 견실한 이상검출)

  • 유경상;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1419-1422
    • /
    • 1997
  • This paper deals with the Appliation of robust fault detection problem in uncertain linear systems, having both model mismatch and noise. A robust fault detection method presented by Kwon et al.(1994) for SISO uncertain systems. Here we experimented this method to the diesel engine systems described by difference ARMA models. The model mismatch includes here linearization error as well as undermodeling. Comparisons are made with alternative fault detection method which do not account noise. The new method is shown to have good performance.

  • PDF