• Title/Summary/Keyword: bias coefficient

Search Result 302, Processing Time 0.027 seconds

A General Procedure for Estimating the General Parameter Using Auxiliary Information in Presence of Measurement Errors

  • Singh, Housila P.;Karpe, Namrata
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.821-840
    • /
    • 2009
  • This article addresses the problem of estimating a family of general population parameter ${\theta}_{({\alpha},{\beta})}$ using auxiliary information in the presence of measurement errors. The general results are then applied to estimate the coefficient of variation $C_Y$ of the study variable Y using the knowledge of the error variance ${\sigma}^2{_U}$ associated with the study variable Y, Based on large sample approximation, the optimal conditions are obtained and the situations are identified under which the proposed class of estimators would be better than conventional estimator. Application of the main result to bivariate normal population is illustrated.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Characterization of Nanoscale Electroactive Polymers via Piezoelectric Force Microscopy

  • Lee, Su-Bong;Ji, Seungmuk;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.232.2-232.2
    • /
    • 2015
  • Piezoelectric force microscopy (PFM) is a powerful method to characterize inversed piezoelectric effects directly using conductive atomic force microscopy (AFM) tips. Piezoelectric domains respond to an applied AC voltage with a characteristic strain via a contact between the tip and the surface of piezoelectric material. Electroactive piezoelectric polymers are widely investigated due to their advantages such as flexibility, light weight, and microactuation enabling various device features. Although piezoelectric polymers are promising materials for wide applications, they have the primary issue that the piezoelectric coefficient is much lower than that of piezoelectric ceramics. Researchers are studying widely to enhance the piezoelectric coefficient of the materials including nanoscale fabrication and copolymerization with some materials. In this report, nanoscale electroactive polymers are prepared by the electrospinning method that provides advantages of direct poling, scalability, and easy control. The main parameters of the electrospinning process such as distance, bias voltage, viscosity of the solution, and elasticity affects the piezoelectric coefficient and the nanoscale structures which are related to the phase of piezoelectric polymers. The characterization of such electroactive polymers are conducted using piezoelectric force microscopy (PFM). Their morphologies are characterized by field emission-scanning electron microscope (FE-SEM) and the crystallinity of the polymer is determined by X-ray diffractometer.

  • PDF

Modeling the tidal connection between in and around galaxy clusters

  • Song, Hyun-Mi;Lee, Joung-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • We analyze the halo and galaxy catalogs from the Millennium simulations at redshifts z=0, 0.5, 1 to determine the alignment profiles of cluster galaxies in terms of the matter density correlation coefficient and discuss a cosmological implication our result has for breaking parameter degeneracies. For each selected cluster, we measure the alignment between the major axes of the pseudo inertia tensors from all satellites within cluster's virial radius and from only those satellites within some smaller radius. Then we average the measured values over the similar-mass sample to determine the cluster galaxy alignment profile as a function of top-hat scale difference at each redshift. It is shown that the alignment profile of cluster galaxies is well approximated by a power-law of the nonlinear density correlation coefficient that is independent of the power spectrum normalization and bias factor. The alignment profile of cluster galaxies is found to have higher amplitude and lower power-law index when averaged over the larger-mass sample and to have rather weak redshift-dependence. This result is consistent with the picture that the satellite galaxies retain the memory of the external tidal fields right after merging and infalling into the clusters but they gradually lose the initial alignment tendency as the cluster's relaxation proceeds. Demonstrating that the nonlinear density correlation coefficient varies sensitively with the density parameter and neutrino mass fraction, we discuss a potential power of the cluster galaxy alignment profile as an independent probe of cosmology.

  • PDF

Error Characteristics of Ship Radiated Noise Estimation by Sea Surface Scattering Effect (해면 산란효과에 의한 선박 방사소음 추정치 오차)

  • Park, Kyu-Chil;Park, Jihyun;Seo, Chulwon;Choi, Jae Yong;Lee, Phil-Ho;Yoon, Jong Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.563-573
    • /
    • 2013
  • The ship radiated noise level fluctuates by the interference between direct and reflected paths. The effect of sea surface reflection path on interference depends strongly on sea surface roughness. This paper describes error characteristics of ship acoustic signature estimation by sea surface scattering effect. The coherent reflection coefficient which explains a magnitude of sea surface scattering and its resultant interference acoustic field is analyzed quantitatively as a function of a grazing angle, effective surface height, frequency, source-receiver range and depths of source and receiver. Theoretical interference acoustic field is compared with experimental result for two different sea surfaces and five different frequencies by changing source-receiver range. It is found that both matches well each other and a magnitude of interference acoustic field is decreasing by increasing a grazing angle, effective surface height, frequency, and depths of source and receiver and decreasing source-receiver range. For given experimental conditions, the transmission anomaly which is a bias error of ship acoustic signature estimation, is about a range of 1~3 dB. The bias error of an existing ship radiated noise measurement system is also analyzed considering wind speed, source depth and frequency.

A Study on Uncertainty of Risk of Failure Based on Gumbel Distribution (Gumbel 분포형을 이용한 위험도에 관한 불확실성 해석)

  • Heo Jun-Haeng;Lee Dong-Jin;Shin Hong-Joon;Nam Woo-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.659-668
    • /
    • 2006
  • The uncertainty of the risk of failure of hydraulic structures can be determined by estimating the variance of the risk of failure based on the methods of moments, probability weighted moments, and maximum likelihood assuming that the underlying model is the Gumbel distribution. In this paper, the variance of the risk of failure was derived. Monte Carlo simulation was peformed to verify the characteristics of the derived formulas for various sample size, design life, nonexceedance probability, and variation coefficient. As the results, PWM showed the smallest relative bias and root mean square error than the others while ML showed the smallest ones for relatively large sample siBes regardless of design life and nonexceedance probability. Also, it was found that variation coefficient does not effect on the relative bias and relative root mean square error.

A Study on Selecting Principle Component Variables Using Adaptive Correlation (적응적 상관도를 이용한 주성분 변수 선정에 관한 연구)

  • Ko, Myung-Sook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-84
    • /
    • 2021
  • A feature extraction method capable of reflecting features well while mainaining the properties of data is required in order to process high-dimensional data. The principal component analysis method that converts high-level data into low-dimensional data and express high-dimensional data with fewer variables than the original data is a representative method for feature extraction of data. In this study, we propose a principal component analysis method based on adaptive correlation when selecting principal component variables in principal component analysis for data feature extraction when the data is high-dimensional. The proposed method analyzes the principal components of the data by adaptively reflecting the correlation based on the correlation between the input data. I want to exclude them from the candidate list. It is intended to analyze the principal component hierarchy by the eigen-vector coefficient value, to prevent the selection of the principal component with a low hierarchy, and to minimize the occurrence of data duplication inducing data bias through correlation analysis. Through this, we propose a method of selecting a well-presented principal component variable that represents the characteristics of actual data by reducing the influence of data bias when selecting the principal component variable.

Reliability of Coronary Artery Calcium Severity Assessment on Non-Electrocardiogram-Gated CT: A Meta-Analysis

  • Jin Young Kim;Young Joo Suh;Kyunghwa Han;Byoung Wook Choi
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1034-1043
    • /
    • 2021
  • Objective: The purpose of this meta-analysis was to investigate the pooled agreements of the coronary artery calcium (CAC) severities assessed by electrocardiogram (ECG)-gated and non-ECG-gated CT and evaluate the impact of the scan parameters. Materials and Methods: PubMed, EMBASE, and the Cochrane library were systematically searched. A modified Quality Assessment of Diagnostic Accuracy Studies-2 tool was used to evaluate the quality of the studies. Meta-analytic methods were utilized to determine the pooled weighted bias, limits of agreement (LOA), and the correlation coefficient of the CAC scores or the weighted kappa for the categorization of the CAC severities detected by the two modalities. The heterogeneity among the studies was also assessed. Subgroup analyses were performed based on factors that could affect the measurement of the CAC score and severity: slice thickness, reconstruction kernel, and radiation dose for non-ECG-gated CT. Results: A total of 4000 patients from 16 studies were included. The pooled bias was 62.60, 95% LOA were -36.19 to 161.40, and the pooled correlation coefficient was 0.94 (95% confidence interval [CI] = 0.89-0.97) for the CAC score. The pooled weighted kappa of the CAC severity was 0.85 (95% CI = 0.79-0.91). Heterogeneity was observed in the studies (I2 > 50%, p < 0.1). In the subgroup analysis, the agreement between the CAC categorizations was better when the two CT examinations had reconstructions based on the same slice thickness and kernel. Conclusion: The pooled agreement of the CAC severities assessed by the ECG-gated and non-ECG-gated CT was excellent; however, it was significantly affected by scan parameters, such as slice thickness and the reconstruction kernel.

Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review

  • Sae Rom Chung;Young Jun Choi;Chong Hyun Suh;Jeong Hyun Lee;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.649-661
    • /
    • 2019
  • Objective: To systematically review the evaluation of the diagnostic accuracy of pre-treatment apparent diffusion coefficient (ADC) and change in ADC during the intra- or post-treatment period, for the prediction of locoregional failure in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Ovid-MEDLINE and Embase databases were searched up to September 8, 2018, for studies on the use of diffusion-weighted magnetic resonance imaging for the prediction of locoregional treatment response in patients with HNSCC treated with chemoradiation or radiation therapy. Risk of bias was assessed by using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Results: Twelve studies were included in the systematic review, and diagnostic accuracy assessment was performed using seven studies. High pre-treatment ADC showed inconsistent results with the tendency for locoregional failure, whereas all studies evaluating changes in ADC showed consistent results of a lower rise in ADC in patients with locoregional failure compared to those with locoregional control. The sensitivities and specificities of pre-treatment ADC and change in ADC for predicting locoregional failure were relatively high (range: 50-100% and 79-96%, 75-100% and 69-95%, respectively). Meta-analytic pooling was not performed due to the apparent heterogeneity in these values. Conclusion: High pre-treatment ADC and low rise in early intra-treatment or post-treatment ADC with chemoradiation, could be indicators of locoregional failure in patients with HNSCC. However, as the studies are few, heterogeneous, and at high risk for bias, the sensitivity and specificity of these parameters for predicting the treatment response are yet to be determined.

Echocardiography Core Laboratory Validation of a Novel Vendor-Independent Web-Based Software for the Assessment of Left Ventricular Global Longitudinal Strain

  • Ernest Spitzer;Benjamin Camacho;Blaz Mrevlje;Hans-Jelle Brandendburg;Claire B. Ren
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.3
    • /
    • pp.135-141
    • /
    • 2023
  • BACKGROUND: Global longitudinal strain (GLS) is an accurate and reproducible parameter of left ventricular (LV) systolic function which has shown meaningful prognostic value. Fast, user-friendly, and accurate tools are required for its widespread implementation. We aim to compare a novel web-based tool with two established algorithms for strain analysis and test its reproducibility. METHODS: Thirty echocardiographic datasets with focused LV acquisitions were analyzed using three different semi-automated endocardial GLS algorithms by two readers. Analyses were repeated by one reader for the purpose of intra-observer variability. CAAS Qardia (Pie Medical Imaging) was compared with 2DCPA and AutoLV (TomTec). RESULTS: Mean GLS values were -15.0 ± 3.5% from Qardia, -15.3 ± 4.0% from 2DCPA, and -15.2 ± 3.8% from AutoLV. Mean GLS between Qardia and 2DCPA were not statistically different (p = 0.359), with a bias of -0.3%, limits of agreement (LOA) of 3.7%, and an intraclass correlation coefficient (ICC) of 0.88. Mean GLS between Qardia and AutoLV were not statistically different (p = 0.637), with a bias of -0.2%, LOA of 3.4%, and an ICC of 0.89. The coefficient of variation (CV) for intra-observer variability was 4.4% for Qardia, 8.4% 2DCPA, and 7.7% AutoLV. The CV for inter-observer variability was 4.5%, 8.1%, and 8.0%, respectively. CONCLUSIONS: In echocardiographic datasets of good image quality analyzed at an independent core laboratory using a standardized annotation method, a novel web-based tool for GLS analysis showed consistent results when compared with two algorithms of an established platform. Moreover, inter- and intra-observer reproducibility results were excellent.