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Abstract

This article addresses the problem of estimating a family of general population parameter 8, 5 using aux-
iliary information in the presence of measurement errors. The general results are then applied to estimate the
coefficient of variation Cy of the study variable Y using the knowledge of the error variance o, associated with
the study variable Y. Based on large sample approximation, the optimal conditions are obtained and the situ-
ations ate identified under which the proposed class of estimators would be better than conventional estimator.
Application of the main result to bivariate normal population is illustrated.

Keywords: Study variate, auxiliary variate, measurement errors, coefficient of variation(CV), bias
and mean square error.

1. Introduction

Statistical procedures for the analysis of the data generally presuppose that the observations are the
correct measurements on the characteristics being studied. This is indeed far from reality in many
practical situations and error ridden observations are a rule rather than an exception. For example in
the standard manometer used for measuring blood pressure by a sleeve wrapped round the arm instead
of a direct measurement of intra-arterial blood pressure, see Cochran (1968, p.638). For more details
and illustrations, the reader is refereed to Fuller (1987), Shalabh (1997) and Sud and Srivastava (2000).
When the measurement errors are negligibly small, the statistical inferences based on observed data
continue to remain valid. On the contrary, when they are not appreciably small and are not negligible,
the inference may not be simply invalid and inaccurate but may often lead to unexpected, undesirable
and unfortunate consequences, see Shalabh (2000).

It is well known that the use of auxiliary information is a common phenomenon in sampling theory
of surveys. This information is used at planning stage of a surveys thereby leading to a better choice
of sample design or it is used at the estimation stage thereby leading to a better choice of estimator.
Out of many ratio, product and regression methods of estimation are good examples in this context.

Coefficient of variation holds an important place in sampling theory, biological studies, biometric
and agricultural experiments and economic studies for measuring the fluctuations, stability and in-
equality. When population mean ux of the auxiliary character is known a large number of modified
ratio and product estimators for estimating the population mean uy of the study variable Y have been
proposed and studied by various authors, see Singh (1986). However, for improving the performance

of survey estimates Searles (1964) used the known coefficient of variation(CV) Cy of the study variate
Y.

! Corresponding author: Professor, School of Studies in Statistics, Vikram University, Ujjain-456010, M.P. India.
E-mail: hpsujn@rediffmail.com



822 Housila P. Singh, Namrata Karpe

Further Das and Tripathi (1981) pointed out that in many practical situations; information on aux-
iliary variable is available for all units in the population. Thus various parameters such as population
mean uy, coefficient of variation Cy, variance o-i, moment ratio 8,(X) (coefficient of kurtosis) and
B1(X) (coeflicient of skewness) for auxiliary variable X can be known easily, see Srivastava and Jhajj
(1980, 1981) and Upadhyaya and Singh (1999).

It is desired to estimate the general population parameter 6, g):

by = 307, (1.1)
where

1

1
(a.p) = (—1, E)’ O, 1), (0, 5), (1,0).

We mention that:
(1) 6-1,1/2) = Cy (population coefficient of variation), for (a,8) = (-1, 1/2),
(ii) 60,1y = 0% (population variance), for (@, 8) = (0, 1),

(iil) 6,1/2) = oy (population standard deviation), for (a,8) = (0, 1/2),

(iv) 84,0y = py (population mean), for (a, 8) = (1,0).

The problems of estimating the population mean(uy) and variance(o) have been dealt by various
authors such as Shalabh (1997), Manisha and Singh (2001), Maneesha and Singh (2002), Srivastava
and Shalabh (2001), Allen et al. (2003) and Singh and Karpe (2008a, 2008b, 2009) in the presence of
measurement errors. We further note that the problem of estimating the population standard deviation
oy using auxiliary information has been considered by Upadhyaya and Singh (2001) in simple random
sampling when the data are recorded without error. In this paper we have made an effort to the
estimation of general population parameter 6, g using auxiliary information when the observations
are subject to errors. In particular we have discussed the problem of estimating the coefficient of
variation using auxiliary information when the observations are subject to errors.

2. Notations and the Conventional Estimator

Consider a finite population U = {U;,U;..., Uy} of N units. Let (Y, X) be the study variate and
the auxiliary variate respectively. Suppose that we are given a set of n paired observations obtained
through simple random sampling procedure on two characteristics X and Y. It is assumed that x;
and y; for the i sampling unit are recorded instead of true values X; and ¥;. The observational or
measurement errors are defined as

u; = (i - Y, @2.1)
vi = (- X) 2.2)

which are assumed to be stochastic with mean zero but possibly different variances 0%, and 0.

For the sake of simplicity in exposition, we assume that «/s and v/s are uncorrelated although X/ s
and Y]s are correlated. We further assume that the measurement errors are independent of the true of
variables. Such a specification can be, however, relaxed at the cost of some algebraic complexity. We
also assume that finite population correction can be ignored.
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Let the population means of (X, Y) characteristics be (uy, 1ty) and population variances be (‘7}0 a%,)
respectively. Further, let p be the population correlation coefficient between X and Y. Let ¥ =
I/n ¥, xi, ¥ = 1/n ¥, y; be the unbiased estimators of population means gy and uy respectively.

We note that 52 = 1/(n — 1) X7, (x; — ©)* and s2 = 1/(n ~ 1) £, (; — y)* are not unbiased estimators

of the population variances (r§ and 0'%. In presence of measurement errors the expected value of s% is
given by

E(s}) =0} +0%.
2

When the error variance o7, associated with study variable Y is known, the conventional estimator of
) in presence of measurement errors is defined by

bapy =567, 2.3)
where a”'i = 52 — o, > 0 is an unbiased estimators of o3 and (, 8) are same as defined in Section 1.
It is interesting to observe that

@) for (@,B) = (~1,1/2), B py — 9(_1, 1/2) = Cy = (6y/y) is the conventional estimator of the
population coefficient of variation Cy;

(ii) for (@,B) = (0,1), §a,5) = Bo.1) = 62, an unbiased estimator of the population variance o%;

(iii) for (@,B) = (0,1/2), 8ap — Bp1/2 = &y, the estimator of the population standard deviation
ay;

(iv) for (e, B) = (1,0), é((,’ 8 @(1,0) = ¥, the usual unbiased estimator of the population mean uy.
Further we define

62=0%(1+685), X=px(1+6:) and §=py(1+0)

such that
C2 0'2 C2 CZ 0.2 C2
_ = 2y _ X _Vi_ X 2y = ¥ R Pg &
E(053) = B(6x) =0, E(6) = - (1 + ffi] = o E(5}) = — (1 + @] .
and to the first degree of approximation (when finite population correction factor is ignored)
Ay KC? ACx Y1rCy
E(65) = =, E(5:55) = —=, E(6536%) = —, E (65205) = —,
where
ot o2 ¥ Xy ol
Ay = Yzy+72u—g]+2(1+—g} , /l=/—1£(’—2), Cx= 2%, O = 52—,
Ty oy ox0y Hx oyt oy
o? o3 H5)
Oy = L, Yiy =71y + Ylu(—u-] , Yir = By, Bi(y) = =,
ooy oy #0)
u3(u)
Yor = B2(y) - 3, Y = Ba(u) -3, Yir = A1), yw = NBuW) = —3_—2—',
U
Ha(0) Ha(y) 2 Cy
Bwy ==~  pO=7=, op=mO)=EY,-mw)?  K=p_,
H5w) H0) Y : Cx

0% = () = EX; —pux)?, ) =EYi-py), r=2,34, @) =EQY -,
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oy =@ =E(),  p@=E(@W), &) =E{X-m)¥-p)?}.

Note that 6 and 6y are the reliability ratios of X and Y, respectively lying between 0 and 1.
The bias and mean squared error(MSE) of 9(0,, p) to the first degree of approximation are respec-
tively given by

5 bapy [ala - 1) C . BB-1)
B(e(a, ,3)) == [TG—: +aBy}yCy + 5 Ay|, 2.4
R o, C2
MSE (e p)) = % ["Ze_yy +20By,,Cy + ,Bsz] . 2.5

See Appendix: A.

3. The Suggested Family of Estimators

Suppose the error variance 0'%, associated with study variable is known a priori, see Birch (1964),
Schneeweif (1976), Srivastava and Shalabh (1997) and Cheng and Van Ness (1991, 1994) etc. We
can utilize this information in suggesting a family of estimators for estimating the general parameter
8(a.p- '

Let a = (X/ux) and h(a) be a function of ‘a’ such that A(1) = 1 and it satisfies the following
conditions:

1. Whatever be the sample chosen, a assumes values in a bounded, closed convex subset, D, of the
one-dimensional real space containing the point ‘unity’.

2. In D, the function h(a) is continuous and bounded.
3. The first, second and third partial derivatives of h(a) exist and are continuous and bounded in D.

We define a family of estimators for the general parameter §,, B as
T(a,ﬂ) = 9(0,5)’1((1). (31)

Under the conditions (1) and (2) the bias and the mean squared error(MSE) of the estimator T(o,, 8
exist, since there are only a finite number of possible samples. The relevant references in this context
are Srivastava (1971), Shalabh (1997), Manisha and Singh (2001) and Singh and Karpe (2008a, 2008b,
2009).

The bias and mean squared error(MSE) of the proposed family of estimators T, to the first
degree of approximation are respectively given by

N N b(a C2
B(Tiwp) = B(Bup) + —2 [(ach +B)Cxm (1) + —Xhu(l)}, 3.2)
n ‘ gx
where B(@)(a, p) 1s given by (2.4).
. 3 b C
MSE (T0)) = MSE (Bap) + —= [2((1KCX +BACxhi(1) + éhf(l)], (3.3)

where MSE(é(a ) is given by (2.5). See Appendix: B.
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Minimization of (3.3) with respect to k(1) leads to:

KCx + BA1)6
hi(1) = _uﬂ_ (3.4)
Cx
Substitution of (3.4) in (3.3) yields the minimum MSE of f'(a ) as
: A - 9(20,8) 2
min MSE (7(a ) = MSE (8ap)) - —2(aKCy +pA%6x. (3.5)

Thus we established the following theorem.

Theorem 1. To the first degree of approximation,

2

MSE (T ) = MSE (Biap) - 9(‘;*‘” (@KCy + )6y

with equality holding if

_(aKCx + )by

h(1) = x

From (3.5) it is clear that the proposed class of estimators T, is more efficient than conventional
estimator 6, ).

FD x _ A2 5 Hx .

T ap = bep) ( i ) (product — type), Tin = Y ( z )(ratlo type),

o _a (EY MO _p VB

Tap = Yan ux) Top = bep [1+y@-D]",

[ 7 A A A x
10 =tenli a0l 19, =+ 1 (2]

T((Z,)B) = [Yé(a,ﬁ) + (1 =g ('L%)] , T{ﬁfg) = B0 exply(a - D],

of the parameter 6, 5 are the members of the proposed family of estimators T, ) at (3-1) and where
¥ is a suitably chosen constant. The biases and mean squared errors of the estimators T(i) ,j=1to
8 can be obtained easily just by putting the suitable value of the derivatives /(1) and h;;(1). .

Putting 4;(1) = 1 and A;(1) = -1 in (3.3) we get the mean squared errors of the estimators T((;ZB)
and 72 respectively as

(@8
fb A Yosr [ 5 Cx +BA)C 3.6
MSE(T(aﬁ))=MSE(0(Qﬁ))+ el +2(aKCx + BACx|, (3.6)
~(2) A H(Zaﬁ) C}2(
MSE (7)) = MSE (Bog) + —= [@ —2(aKCx + ,BA)CX] . (3.7)

It follows from (2.5), (3.6) and (3.7) that:
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(i) the product-type estimator T((lib,) is better than ?)(a ) if
Cx
KCx + ) < ——
(@KCx +BA) 20
ie. if

9 1
(@KCx + )= < —=
Cx

5 (3.8)
(ii) the ratio-type estimator T(( 33) is better than 8,4 if
Cx
KCx + Ay > —
(aKCx + B 20,
ie if

(aKCx +,B/l)— > 1

5 (3.9)

From (2.5), (3.3), (3.6) and (3.7) we note that the proposed family of estimators T (@3 18 better than
(i) the conventional estimator 8, g if

min {O’ _2(aKC;;‘( +,3/l)0x} < hy(1) < max {0’ ~2(aKCyx +,3/1)9x}
X

3.10
Cx (3.10)
(ii) the product-type estimator T((lzﬁ) if
. Ox Cx Cx
l, —— 24+ = 1 1, ——[2A + 3.11
mm{, Cx( +0X)}<h1()<max{ C ( rm (3.11)
(iii) the ratio-type estimator T((z?ﬁ) if
. O Cx Cx
-1, — 1 1, 2A + 3.12
mm{ 1, CX(2A+9X)}<h1()<max{ oM ( 9x)} (3.12)

Following Srivastava (1980), it is easily demonstrated that if we consider a wide class of estimators

TH = H(é(aﬁ),a)

of the parameter 6,5, Where function H(8(, ), a) satisfies H(6(a ), 1) = Oap)-
To the first degree of approximation, the MSE of the class of estimators Ty is given by

(3.13)

MSE (Tyy) = —(‘:f) [a2 o +20BYiyCy + B Ay + 2005 (aKCx + BACxHoBas 1)
Y
2

C
+ 00| (3.14)
X
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which is minimized for

(aKCyx + BD)IxO. g

Hy(bup), 1) = Cx

(3.15)
where Hx(8(,.p), 1) = 0H(Oo py, @)/ ﬁal@w 1) is the first-order partial derivative of the function H (9(0, B
a) about the point (B, 5), @) = (Bap), ).

Substituting (3.15) in (3.14) we get the minimum MSE of the Ty as

N . 62
min MSE () = MSE (8(ap)) - %@(aKcX + B0y, (3.16)

which is same as given (3.5). Thus the resulting minimum MSE of Ty is equal to the minimum MSE
of Tq g given at (3.5) and is not reduced.
It is to be noted that the difference type estimator

Ty=0up+da-1) (3.17)

is a member of the class Ty given by (3.13) but not of the class YA}Q » given by (3.1), where d is a
suitably chosen constant.

Remark 1. Suppose that the observations for both the variables X and Y are recorded without error.
The MSE of the suggested class of estimator f(a - to the first degree of approximation, is given by

) &
- MSE(Tap), = =2 [2°C} + 208711 Cy + B(rar +2) + 2aKCx + BHCx(1) + CHI(D)]

N o
= MSE (fa), + i;!i) |2k Cx + BOCxRi (1) + CRRA(D)], (3.18)
where
A 9(20»19 2,2 2 ‘
MSE (fap), = —= [@2C} + 20By1yCy + Fyay +2)] (3.19)

is the mean squared error of the usual estimator §, ) to the first degree of approximation when the
observations are recorded without error. The MSE(7 ,, 5); at (3.18) can be easily obtained from (3.3)

by putting 0%, = 0% = 0.

From (3.3) and (3.18) we have

. . 3 1-9 1-6y\?
MSE (To9)-MSE(T(o), = (:B)[“ZC%( GYY)+20,3 ””CY( eyy)

2 Y1
2 {(Yzy N 2)(1 - By) . 4(1 - Gy)} +C2 (Lﬁ)hf(l)], (3.20)
Oy Gy Gy

which is always non-negative. Thus, the suggested class of estimators T 5 has larger MSE in pres-
ence of measurement errots than in the error free case.
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The MSE(T 4 ) at (3.18) is minimized for

(1) = - @ECx +BY. (3.21)
Cx
Thus the resulting minimum MSE of T(a ) is given by
. S 6‘(20»8) 22 2 2
min MSE (7, ﬁ))z =—= [a C2 + 20By1yCy + B yay + 2) — (@KCx + BA) ] . (3.22)
From (3.5) and (3.22) we have
min MSE (T q5)) -~ min MSE (Ts.5)),
o 1-6 1-6y\?
(@ -
- nﬁ) [QZC%, ( 5 Y) +2aBy1uCy ( o Y)
1-6y\’ 1-6
+,32{(m + 2)( - Y) + 4( - Y)} + (@KCyx + BA*(1 - 6y)|, (3.23)
Y Y

which is always non-negative. Expression (3.23) clearly indicates that the presence of measurement
errors associated with the variables X and Y inflates the MSE of the suggested class of estimators

T p).

4. Estimation of Coefficient of Variation in Presence of Measurement Errors

The problem of estimating population mean uy (or total (T = Npuy) has been considered extensively
in the sample survey literature.

The problem of estimating the variance o-%, has been considered, among others by Singh et al.
(1973), Liu (1974), Das and Tripathi (1977, 1978), Srivastava and Jhajj (1980), Searls and Intera-
panich (1990), Singh ez al. (1988, 1990) and Singh and Karpe (2008b, 2009).

In many practical situations, where the variability and stability among Y values, e.g. dispersion
per unit mean in the population, is of interest to study, the estimation of Cy deserves special attention.
The problem of estimating of population coefficient of variation Cy using information on auxiliary
variable X has been taken up by Das and Tripathi (1992-1993) and Tripathi ef al. (2002) when the
true observations are recorded.

Here we consider the problem of estimating the population coefficient of variation Cy using auxil-
iary information in presence of measurement errors. The conventional estimator of Cy when the error
variance o7, associated with study variable ¥ is known in advance is defined by

A . (6
dan=6=(2) @D

Putting (@ = -1, § = 1/2) in (2.4) and (2.5) we get the bias and MSE of the conventional estimator
C, to the first degree of approximation respectively as

o 1-6y\F A
_Y__{71Y+')’1U( Y) Cy—?y

o 4.2)
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and

MsE(G,) = &

c? 1-6y\? Ay
R SR Cy+ 211, 43
9y {Yw )’w( o ) v+ 4.3)

Expression (4.2) of bias of éy clearly indicates that the bias of C, is negligible if the sample size n is
sufficiently large. In case the population mean py of the auxiliary variable X is known, motivated by
Das and Tripathi (1992-1993) we define the following estimators for estimating Cy in the presence of

measurement errors as
~ | X A
dlzcy(~), b =G().
Hx X

One can also define the following estimators for Cy as

w \0
ds :éy(i) , dy=Cll+8@-DI",  ds=C)[1+6@a-1),
Ex
~ a-—1 A 1—a A o(a—1)
d6=Cyexp(a+1), d7-Cyexp(m), dg-Cyexp[ P },

etc., where § is a suitable chosen constant.
Putting (& = -1, B = 1/2) in (3.1) we get a class of estimators for Cy as

Ty = Cyh(b) = T (say). (4.4)

Putting (@ = -1, 8 = 1/2) in (3.2) and (3.3) we get the bias and MSE of T to the first degree of
approximation respectively as

N oAy, Cr[CE o, (2KCx - D)Cx
B(T)=B(C,) + — [akl(l) - ), 4.5)
R Ay, Cr[Cx
MSE (T) = MSE(C,) + =X [—’ih%(l ) - (2KCx - A)thl(l)] , (4.6)
n 6X

where B(C,) and MSE(C,) are respectively defined by (4.2) and (4.3).
The MSE of T given by (4.6) is minimized for

(A -2KCx)ox
=" 272 4.7
m)y 3Cx 4.7
Thus the resulting minimum MSE(7) is given by
_ . e 1-6y\? Ay (1-2KCy)%0x
mmMSE(T)=7 E_ ')/1y+'yuj( oy ) CY+T_——4__
C2(A - 2KCx)*0
~MSE(G) - Oy~ 2KCo"0x 4.8)
4n

which clearly indicates that the proposed estimator 7" has smaller MSE than the conventional estimator
é,.
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Thus we state the following theorem:
Theorem 2. To the first degree of approximation,

Cf,(/l — 2KCx)*6x
4n

min MSE (T) = MSE(C,) -
with equality holding if

(A - 2KCx)fx

) =
1D 2Cs

It may be easily observed that the estimators d;, j = 1 to 8 are the members of the suggested class of
estimators T defined at (4.4). The biases and MSEs of the estimators d, j = 1to 8 can be easily be
obtained from (4.5) and (4.6) respectively just by putting suitable value of the derivatives A;(1) and
k11 (D).

To the first degree of approximation the MSEs of the estimators d;, j = 1 to 8 are respectively
given by

2 2

MSE(d;) = MSE(C,) + G| _ (KCx - /l)CX], 4.9)
X
2

MSE(dy) = MSE(C,) + 7Y X 4+ QKCx - /I)CX], (4.10)
| Ox
C2 2

MSE(ds) = MSE () + 7Y X452 — QKCx - A)&CX], (4.11)
X
e,

MSE(d,) = MSE( )+ 7Y X5+ 2KCx — /l)dcx], 4.12)
X

MSE(ds) = MSE(d3), (4.13)
. CECE

MSE(ds) = MSE(C,) + o -ﬁ - (2KCx - A)CX], (4.14)
o CA[c

MSE(d;) = MSE(C,) + o _g +(2KCx — /l)CX] , (4.15)

C2 [6%C2
dy) = MSE(C,) + =X 4.16
MSE(ds) = MSE (C,) + o | 20, ] (4.16)

The mean squared etrors of d3, ds, ds and dg are respectively minimized for

_ (2KCx - /1)0X’ @1n
2Cx

(A - 2KCx)fx
§= DX 4.18
2Cy (4.18)

(2KCx — )bx
- by — A% 4.19
) 2Cy , 4.19)
_ (2KCx - by (4.20)

2Cx
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The common minimum MSE of the estimators d3, ds, ds and dg is given by

C2(A - 2K Cx)*6x
4n
=minMSE(7), j=3,4,58 @21

min MSE(d;) = MSE(C,) -

which is same as the minimum MSE of T given by (4.8). Thus the estimators belonging to the
proposed class of estimators 1" will not have MSE/min. MSE smaller than that of 7.
Further from (4.8), (4.9),(4.10), (4.14) and (4.15) we have

N C
MSE(d;) — min MSE (T) = —L [2Cx — 8x(2KCx - D) = 0, 4.22)
4ﬂ9x
_ e
MSE(d,) — min MSE (T) = —4n; [2Cx + 6x(2KCx — D> = 0, (4.23)
X
o 2
MSE(ds) — min MSE (T) = —L- [Cx - x(2KCx - DT 2 0, 4.24)
4n9x
o C2
MSE(d;) — min MSE (T = "c'm% [Cx + 8x(2KCx — J = 0. (4.25)
X

It follows from (4.22), (4.23), (4.24) and (4.25) that the proposed class of estimators Tor,j=
3,4,5, 8) is more efficient than dy, d;, dg and d; at its optimum conditions.

In practice it may happen that the value of the constants involved in the estimators may not co-
incide exactly with its optimum value. In such a situation one has to use some guessed values of
the parameters and hence the optimum value. Thus we derive the regions of preference in which the
proposed class of estimators 7" is better than conventional estimator C‘y, the product-type estimator d;
and the ratio-type estimator d, and the estimators dg and d.

From (4.3), (4.6), (4.9), (4.10), (4.14) and (4.15) it follows that the proposed class of estimators Tis
better than:

(i) the conventional estimator C y if

min {0, M (4.26)

Cy

} < hy(1) < max {0’ M}
Cx

(it) the product-type estimator d, if

min {—1,(1 + M)} < hi(1) < max {—1,(1 + M)} 4.27
CX CX

(iii) the ratio-type estimator o, if

min {—1, (1 + w)} < hy(1) < max{—l,(l + M)} 4.28)

X Cx

(iv) the estimator dg if

(1 1({@KCx - 1)y 1 1{QKCx - b
HHH{E,E(—_EX——— —-1)} <k1(1) <max{5,§(——cx——— —1)} (429)
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(v) the estimator dy if

. 11 (2KCyx — )by 11 (2KCx — D)bx
mln{—z,z(l + C—X)} <h1(1) <max{—§,§(l +—C'X—_)} (430)

Further from (4.3), (4.9), (4.10), (4.14) and (4.15) we note that

(i) the product-type estimator d; is better than the conventional estimator C'y if

o> —(u 91) @31)

p< — (,1 - ﬁ) (4.32)

(iii) the modified product-type estimator d is better than the conventional estimator C'y and the
product-type estimator d; respectively if the following inequalities:

1 Cx
LI PR § 4.33
”>zcy(’”zex)’ 433
1 3Cx
LI P 434
p<2cy(“2ex) 434

(iv) the modified ratio-type estimator d is better than the conventional estimator C‘y and the product-
type estimator d, respectively if the following inequalities:

1 Cx
—[a-=X 435
P> 56 (A 26,}(), 435)
1 3Cx
— (A==, 436
P= 26y (A zex) #39

Remark 2. Putting (@ = —1, B = 1/2) in (3.13) we get a class of estimators for Cy wider than the
class of estimators defined at (4.1) as

7 =H(Cy.a), (4.37)

where H(C,, a) is the function of €, and a such that H(C,, 1) = Cy and also satisfies certain regularity
conditions as given in Srivastava (1971).

It can be easily shown to the first degree of approximation that

min MSE (7*) = min MSE (T) (4.38)
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where min MSE(T") given by (4.8). It is to be noted that the following estimators:

2T 5+ d@-1

are the members of the class 7" given by (4.37) but not of the class T given by (4.4), where d and d*
are suitably chosen constants.

Remark 3. Putting (@ = —1, 8 = 1/2) in (3.18) we get the mean squared errors of the class of
estimators 7 when both the variables X and ¥ are recorded without error, as

: 7 C%’ 2 1 212
min MSE (7)) = — | C7 = 7rCr + 72y +2) = @KCy = DCxi(1) + Cxhi(1)

2
= MSE (C‘y)t + % [C§h§(1) — (2KCx - A)thl(l)] , (4.39)

where

2

A C 1
MSE (Cy)t = 7)/ [C?; —v1yCy + Z(‘yzy +2) (4.40)

is the mean squared error of the conventional estimator C'y to the first degree of approximation when
the observations are error free. The MSE(T"), at (4.39) can be easily obtained from (4.6) by putting

2 _ 2 _
oy =0y =0.

Putting (o = -1, 8 = 1/2) in (3.20) we get

3
MSE (1) - MSE (T)t = %%[cg (%) —y1uCy ( 1 ;Yey)

1 1-6y\  [(1-6y o (1-6x\ 5
+Z{(y2y+2)( . )+4( o )}+CX( o )hl(l)}, (4.41)

which is positive. Hence the proposed class of estimators 7" has larger MSE in the presence of mea-
surement errors than in the error free case. Expression (4.41) clearly indicates that the errors associ-
ated with both the variables X and Y are accountable for increasing the MSE of 7.

Further putting (o = -1, 8= 1/2) in (3.23) we get

_ . . R Col ,(1-6y 1—9y%
mmMSE(T)—mmMSE(T){:Y[CY(Ty)—%UCY( oy )

1 1-6y\> [(1-0 1
+Z{(72Y+2)( eyY) +4( HYY)}+Z(2KCX—/I)2(1—6X), (4.42)

which is positive. It follows from (4.42) that the presence of measurement errors associated with both
the variables X and Y increases the MSE of the proposed class of estimators at the optimum condition.
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5. Applications of Main Results in Bivariate Normal Population

The main results in Section 3 can easily be employed in bivariate normal populations with obvious
modification. Suppose we want to estimate the parameter 6,5 when (Y, X) follows bivariate normal

distribution (ux, py, 02, 0%, p), u; ~

N(0,0%) and v;

~ N(0,0%). In such a case, y2y = y2u = 0, 71y =

¥1v = O and. Thus the expressions in (2.5), (3.3), (3.5), (3.6), (3.7), (3.18), (3.19), (3.20), (3.23), (4.3),
(4.6), (4.7), (4.8), (4.9), (4.10), (4.14), (4.15), (4.39), (4.40), (4.41) and (4.42) respectively reduce to;

®

(ii)

(iii)

(v)

)

(vi)

(vii)

(viii)

(ix)

x)

(xi)
(xii)
(xiii)

(xiv)

6’
MSE (Bup) = (c;ﬁ) ( 22,

MSE (Tia) = MSE (o)) +

2.3
6y
Cx

{2aK0x + hi(1)} b1 (1)

a’é?

Oty
nlx

5 K2C0x

min MSE (T0,5)) = MSE (8o - T lap” TXX

. R 0.s(1-6 1+6
min MSE (7 a ) — min MSE (7, ), = @h) [( Y) {a20§ + 28 (—;’l)}

. Ci .,
MSE(C,) = pr (CY +

MSE (T) = MSE (C,) +

hi(1) = —Kéy

min MSE (7) = MSE(C, ) -

MSE (d)) = MSE(C, ) +

6
7(1) ):MSE(G(aﬁ)) (anﬁ)C

Z
7
&

n

(1 +2aKéy)

6 . C>
+ M(l — 2aK6y)
nHX

2C2 4 2,82)

2

N 0
Bap), + —2 (20K + by (D} (1)

) 920 1-9 6
o) M52 = 52 52 {52 )

Y

+ c§(1 "Hx)hf(l)] >0

n Hy Y

+a?K*C2(1 - ex)] >0

1
20y

2 2
Cyi" {hi(1) - 2K) by (1)

TG MSE(C,) - C”

Cc2C?
Y “X(1-2K8y)
n0X

(5.1)

5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
(5.12)

(5.13)

(5.14)
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(xv) MSE(dz):MSE( ,) Cr X(1+2K0X) (5.15)
2 2
(xvi) MSE(ds) = MSE(C,) + - X(1—4K0X) (5.16)
X
L\ C2C2
(xvi) MSE(d;) = MSE(C,) + 4Y X (1 +4K6y) (5.17)
(xvili) MSE(C)) = & 2yl (5.18)
I n ¥oa
. . C2 2
(xix) MSE(T)tzMSE(cy)Z+ YnX{hl(l)—ZK}hf(l) (5.19)
P P C?z 1-6y 2 1/1+6y 2 2
(Xx) MSE(T)—MSE(T)[=7 (Ty){cﬁi( o )} c: ( 5 )h(l)} (5.20)

2
(xxi) min MSE (7)— min MSE (7 :%{(1_9Y){C%+%(lzgy)}+p2C%(l—0X)]. (5.21)
t Y

From (5.1), (5.4) and (5.5) it follows:

Cx

() MSE(T{);) < MSE (fup). if p < " 2aCy0x

(@)

(i) MSE(Tgfﬂ)) <MSE (9(0,5)), if p> 2a?;6x'

From (5.1), (5.2), (5.4) and (5.5) we note that
(i) MSE (T p) < MSE (fup).  if min(0, ~2aK6y) < max(0, —2aK6y)

(ii) MSE(T([, ﬁ)) < MSE( (“38)), if min{1,—(1 + 2eK0x)} < hy(1) < max {1, —(1 + 2aK6x)}

(iii) MSE (7, ») < MSE (Tgfﬂ)) if min{-1,(1 - 2aK6x)} < (1) < max {~1, (1 - 2aK6y)}.

It is also observed from (5.8) and (5.9) that

(i) the estimator T, 4 has larger MSE in presence of measurement errors than error free case even
in bivariate normal population, u; ~ N(0, o‘%,) and v; ~ N(O, cr%,); and

(i) (i1) the presence of measurement errors associated with both the variables X and Y inflates the
MSE of the suggested class of estimators 7,5 at the optimum conditions. Thus the presence of
measurement errors disturbs the optimal properties of the suggested class of estimators T, ).

From (5.10), (5.14), (5.15), (5.16) and (5.17) it is observed that:

. A " Cx
(i) MSE(d)) <MSE(C,), if p> Cotr

. A . Cx
(i) MSE () <MSE(C,), if p< ~Sed

A . Cx
(i) MSE(de) < MSE(C,), if p> iCtn
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. A ) C
(iv) MSE(d7) < MSE(C,), if p<- 4CYX€X.
Further from (5.20) and (5.21) it is observed that the presence of measurement errors associated with
two variables X and Y enhances the MSE/minimum MSE of the estimator 7" in bivariate normal
populations, u; ~ N(0,07) and v; ~ N(0, o).

For simplicity we assume that Cx = Cy = C(say), (X, Y) follows a bivariate normal populations

with parameters (ux, py, 05, 0%, p), u; ~ N(0,02), v; ~ N(0, %) and the ratio of measurement error
variance and the true variance are same i.e.

2 2
o o

U v
gy Ox

The percent relative efficiencies of the different estimators of population coefficient of variation Cy
over usual estimators are defined by:

1+¢)2C* +¢+1)

PRE(d. ¢)= [+ +¢+ 1) +2C2-20+ D] - 100, ©-22)
AN 2(1 +¢)(2C? + ¢+ 1)
PRE (ds. €,) = RO+ RCE+é+ 1)+ Co—dp+ )] 100, ©.23)

N A+$)2C*+¢+1)
PRE(T,C,) = AT0ac rar1)—25c < 1% (5.24)

It follows from (5.22), (5.23) and (5.24) that for the case of:

() d,,if (¢ - 20+ 1) < 1, PRE(d,, CA‘y) is bigger than 100

(i) de, if (¢ — 4p + 1) < 1, PRE(ds, C,) is bigger than 100 and
(iii) T, PRE(T,C,) is always bigger than 100.
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Appendix: A
To the first degree of approximation, the bias and mean squared error of 9(,1 5 are obtained as follows:
bap = 565
=15 (1+65) (1 +6,) o
=50 ? (1+65) (1465

= Oagy (1 +85)" (1 + 652)

-1 -1

= 0aup 1+06y.+a(6¥2 )5§+-..:H1+ﬁ66_§+@5§2+...]
- -1

=0Oaup |l +ad; +ﬁ55’,+ a(a’z 1)6y+ﬁ(ﬂ2 )5§_y+aﬁ6)766'y+"']
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or

(B ~ b)) = bhaspy | @65 +B0s2 + afi63042 + (A1)

ala-1), BB-1),
> 69+ 3 6@}.

Taking expectations of both sides in (A.1) we get the bias of @)(a ) to the first degree of approximation,
as

A bap [ala=1)C .
B(e(a,ﬁ)) = =2 {——_Y +afyiyCr +

(A2)

n 2 GY

ﬂ(ﬂz— I)AY]~

Squaring both sides of (A.1) and neglecting terms of ¢’ s having power greater than two we have

A~ 2 2
(Pap - bap) =60 (b5 +B5;2)
or
" 2 2
(e(aﬁ) - e(aﬂ)) =6p (a25§ + 20883657 + 525%) ) (A3)

Taking expectations of both sides in (A.3) we get the mean squared error of 9(0, ) to the first degree of
approximation, as

R sy [ ,C2
MSE (o) = % [QZQ—YY +20PBy,Cy + ﬁsz] (A4)

Appendix: B

The bias and mean squared error(MSE) of T(a ) 10 the first degree of approximation are obtained as
follows:

Expanding h(b) about the point a = 1 in third order Taylor’s series, we obtain

. . -1)? a-1)> .
Ty = Oiagy [h(1)+<a— D+ Lm0+ O )], ®.1)
where a* = 1+ (u - 1),0 < < 1 and i may depend on a and
Bh(a) Ph(a) 0
h(1) = da | hu(1) = o |, hin(1) = o |,
Noting that £(1) = 1 in (B.1) we have
. . -1)? a-1)>» .
P = |+ @= D) + 51+ ).

Further

(a_l)z(z_l):{w_l}zai_
Hx Hx
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Expressing (B.1) in terms of §’s we have

. ala -1 1)
Tep 29(013){1 +ady + ( 3 )5§+,3<5ar§ + fd50,; +'B('B 5%2“1 +d0sh1(1)

52 5
+ —hu(l) +—= hm(ﬂ )]

ala—1)
2

-1
&%+ Bbs: + b5y + P& )5% +8:h1 (1) + @865 (1)

=0upll + ad;
(ﬁ)[ oy + 5

63 6
+Bos20:h1 (1) + Exhn(l) + Eth(a*) +o ]

or
A ala -1 -1
(T(,, 5~ e ﬁ)) = b ﬁ,[aay + & 5 )5§ +Bbs2 + P36z + pé 5 623 +8zh1 (1)
62 &
+ d&;&yhl(l) +ﬂ66.)25;h1(1) + —2£h11(1) + —61]1111([1*) +-- ] (B2)

Neglecting terms of §’s having power greater two we have

N ala -1
(T(aﬂ) - G(am) = 9(aﬂ>[0/5& el 5 )5§ + o5 + offd504 + 'B(ﬂ 52 +0zh1 (1)

2
+ adzd5h1(1) +Bos2605h1 (1) + %hn(l)]. (B.3)

Taking expectations of both sides in (B.2) we get the bias of T, g, to the first degree of approximation
as

B(T(aﬁ))=o(aﬁ)[aE(5y)+a(az_ Vg E(62) + BE (6,) + aBE (656,) + 'sz_ I)E(dgg)

62
+ E @) hi(1) + aE (8385) hy(1) + BE (6526%) P (1) + E( 3 )hn(l)]

_ 2 _ C2
_ ben [M & : BE > D4, + (@KCy + BOCxhi(1) + H—th(l)]
X

— + Cy+
n 2 o, oBYirCy

2

= B(Blup) + Yoty [(aKCX +BOCxhy(1) + &hu(l)], (B4)
n Ox

where B(é(a ) is given by (A.2).
is the bias of 9(,1 ) to the first degree of approximation.
Squaring both sides of (B.3) and neglecting terms of &’s having power greater than two we have

N 2 2
(Tan ~Yen) =g [“‘% + B4 + 52111(1)]
=65 [a25§ + /32523 +63H3(1) + 20855652 + 2B84520:h1(1) + 2a8:05h1(1)|. (B.5)
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Taking expectations of both sides in (B.6) we get the MSE of (f'(a ) to the first degree of approxima-
tion as

. R g c?
MSE (T(a ) = MSE (8o + (‘:f’ [2(a1<cx +BA)Cxhy (1) + o—jh%(l) , (B.6)

where MSE(@(C, ), which is given by (A.4), is the MSE of 9(a ) to the first degree of approximation.
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