• Title/Summary/Keyword: beta-carotene

Search Result 675, Processing Time 0.035 seconds

Comparison of Ascorbic Acid, Lycopene, ${\beta}$-carotene and ${\alpha}$-carotene Contents in Processed Tomato Products, Tomato Cultivar and Part (토마토 품종 및 부위별과 토마토 가공제품의 ascorbic acid, lycopene, ${\beta}$-carotene과 ${\alpha}$-carotene 함량 비교)

  • Choi, Suk-Hyun;Kim, Dong-Ho;Kim, Dong-Seok
    • Culinary science and hospitality research
    • /
    • v.17 no.4
    • /
    • pp.263-272
    • /
    • 2011
  • For tomatoes containing valuable nutrients and biological active substances, this study examined differences in the ascorbic acid, lycopene, ${\beta}$-carotene, and ${\alpha}$-carotene contents in processed tomato products according to tomato cultivar and the part of fully ripened tomatoes. According to the results, the ascorbic acid content was different among tomato cultivars, and it was far higher in jelly than in pulp among the parts of tomatoes. The ascorbic acid content in processed tomato products was higher in tomato juice than in other types of tomato products, but the difference was mainly from various additives used in addition to tomatoes; therefore, it was somewhat unreasonable to compare the ascorbic acid content among the products. It was found that the lycopene content was not significantly different between pulp and jelly in each cultivar. In most of the cultivars, the ${\beta}$-carotene content was not significantly different according to the parts, but in cultivar yeoyong, the content was 2.7 times higher in jelly than in pulp. The ${\alpha}$-carotene content was highest in both pulp and jelly for all the cultivar, and the lycopene and ${\beta}$-carotene contents were lowest regardless of parts for cultivar Yellow Carol. ${\alpha}$ carotene was not detected in either pulp or jelly. The lycopene, ${\beta}$-carotene, and ${\alpha}$-carotene contents showed significant difference among processed tomato products, and the difference came mainly from the type of processing and additives. Tomatoes have superior characteristics, but they are usually consumed uncooked in Korea. Thus, this study aimed to contribute to the various forms of consumption of tomatoes, that is, the development of various nutritionally excellent cooking methods using processed tomato products.

  • PDF

Induction of ${\beta}$-carotene by Ozone and Hydrogen Peroxide and Extraction Using Vegetable Oil from Microalga Dunaliella bardawil (미세조류 Dunaliella bardawil에서 오존과 과산화수소에 의한 ${\beta}$-carotene의 축적과 식용기름을 이용한 추출)

  • Yu, Gyeong-Won;Jeong, Uk-Jin;Jeong, Byeong-Cheol
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.289-295
    • /
    • 1999
  • Halotolerant microalga Dunaliella bardawil was reported to massively accumulate the ${\beta}$-carotene, which protects cells from excess light intensity. Maximum specific growth rate of 0.168/hr was achieved when cells were cultivated at 1 N NaCl, pH 8.0, light intensity 80 ${\mu}E/m^{2}/s$, agitation 70rpm. For the effectiv accumulation of ${\beta}$-carotene, ozone ro hydrogen peroxide was added to media which was irradiated with white fuorescent lamps with moderate light intensity of 250 ${\mu}E/m^{2}/s$. As a result, maximum volumetric content of ${\beta}$-carotene was 324 ${\mu}$g/㎖. The ${\beta}$-carotene extraction efficiency of vegetable oils was in the order of olive oil, sesame oil, rice brain oil, corn oil, and soy bean oil. Sonication and warming was effective in ${\mu}$-carotene extraction and finally 96.9% of ${\beta}$ could be extracted using olive oil.

  • PDF

Extraction of ${\beta}$-carotene from Ascidian Tunic [Halocynthia roretzi] using Supercritical Carbon Dioxide and Co-solvent (초임계 이산화탄소를 이용만 우렁쉥이 껍질로부터 ${\beta}$-carotene 추출)

  • Kang, In-Sook;Youn, Hyun-Seok;Park, Ji-Yeon;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.194-198
    • /
    • 2006
  • Dried raw Ascidians(Halocynthia roretzi) shells harvested from fish farms in southern coast area in Korea were used to extract ${\beta}$-carotene using supercritical carbon dioxide($SCO_2$) and with ethanol as a co-solvent at the range of temperatures and pressures, from 25 to $65^{\circ}C$ and 100 to 350 bar respectively. The size of the dried Ascidians shells was around $850{\mu}m$. The system used this study was a semi-batch flow type high pressure unit. The efficiency of ${\beta}$-carotene extraction using $SCO_2$ with and without co-solvent, ethanol, influenced to pressure and temperature changes. The highest solubility of ${\beta}$-carotene in $SCO_2$ was 1.35 mg/g for ${\beta}$-carotene at $35^{\circ}C$ and 350 bar. With addition of 2(v/v%) ethanol the recovery of ${\beta}$-carotene was 93%. As a result of using n-hexane and methanol for rinse, at $35^{\circ}C$ and 350 bar the amount of ${\beta}$-carotene by methanol rinse was 5 times higher than that of n-hexane rinse.

Characterization of Yellow Mutants Isolated from the Red Yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous)

  • An, Gil-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 1996
  • Yellow mutants of the astaxanthin producing red yeast Phaffia rhodozyma were obtained by nitrosoguanidine mutagenesis. The carotenoid composition of the yelow mutants, Yan-1 and Ny-1, was mainly $\beta$ -carotene (> 95$%$) and torulene (< 5$$). Therefore, the yellow mutants are carotene oxygenation deficient mutants (CODMs). CODMs produced decreased quantities of carotenoids compared to their red parents and this indicated that carotene may regulate its synthesis. CODMs, Yan-1 and Ny-4, on plates containing 50 $\mu$ M antimycin, showed highly pigmented vertical papillae. Antimycin-induced mutants purified from the papillae showed increases in carotenoid content (up to 1 mg $\beta$-carotene/g yeast). CODMs, Yan-1 and Ay-1, were more sensitive to antimycin than red strains, Ant-1 and 67-385. This was probably due to lower antioxidant activity of $\beta$-carotene than that of astaxanthin. Light increased torulene and light+antimycin further increased the torulene. Yan-1 and Ny-4 could grow with succinate, though their red parents, Ant-1 and Anf-1p, could not. However, antimycin induced mutation of Yan-1 or Ny-4 destroyed the ability to grow with succinate.

  • PDF

Beta-carotene and Lutein Contents in Green Leafy Vegetables (녹색잎 채소류의 ${\beta}$-Carotene과 Lutein 함량)

  • Lee, Hwa-Suk;Kim, Young-Nam
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.2
    • /
    • pp.175-180
    • /
    • 1997
  • Beta-carotene and lutein contents in 7 different green leafy vegetables(perilla leaf, mugwort, chwi, lettuce, spinach, leek, and crown daisy) were analyzed by HPLC. The isocratic separation was performed on a ${\mu}-Bondapak$ $C_{18}$ column with a solvent system of acetonitrile : dichloromethane : methanol = 70:20:10. To check the reliability of the method applied, precision and recovery tests were performed. Perilla leaf showed the highest ${\beta}-carotene$ content(12,570 ${\mu}g$ / 100 g), followed by mugwort and chwi, all of those have ${\le}10,000\{\mu}g\{\beta}-carotene$ per 100 g vegetables. Green lettuce, spinach, leek, crown daisy and reddish brown lettuce contained 9,869, 6,689, 5,664, 3,601 and 3,299 ${\mu}g\{\beta}-carotene/100 g$, respectively, Lutein content was the highest in perilla leaf($13,718{\mu}g/100 g$) followed by chwi($11,989{\mu}g/100 g$), mugwort($11,522{\mu}g/100 g$), green lettuce($10,307{\mu}g/100 g$) and spinach($10,115{\mu}g/100 g$). ${\beta}-carotene$ contents in perilla leaf, mugwort, chwi and green lettuce were 47.8~49.6% of total carotenoids, and ${\beta}-carotene$ contents in the other green leafy vegetables analyzed were 37.7~41.4% Vitamin A contents of green leafy vegetables analyzed by HPLC were 2~6 times higher than the vitamin A values shown in food composition tables except crown daisy.

  • PDF

Influence of antioxidants on β-carotene degradation in nanoemulsions (나노에멀션 내의 베타카로텐 분해에 미치는 산화방지제의 영향)

  • Park, Jun-Kyu;Kwon, Yun-Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.324-330
    • /
    • 2018
  • In this study, we examined the effects of carrier oil type (MCT oil: MO, corn oil: CO, palm oil: PO), pH of dispersion solution, and antioxidants on the chemical degradation of ${\beta}$-carotene in oil-in-water nanoemulsions. The pH of the emulsion had a significant influence on the stability of ${\beta}$-carotene, which showed rapid degradation in emulsions at low pH value and relatively higher stability at high pH values. The influence of the carrier oil type on ${\beta}$-carotene stability was assessed. The rate of ${\beta}$-carotene degradation increased in the following order: CO > PO > MO. The effect of antioxidants on ${\beta}$-carotene degradation was monitored during storage at $25^{\circ}C$ for 4 weeks. The rate of ${\beta}$-carotene degradation decreased upon addition of water-soluble (ascorbic acid) or oil-soluble (tocopherol) antioxidants. In general, tocopherol was more effective than ascorbic acid in reducing ${\beta}$-carotene degradation. To utilize this nanoemulsion for producing acidic beverages, adding a higher concentration of antioxidants is required.

Comparision of Carotenoid Pigments in Catfish, Parasilurus asotus and Slender catfish, Parasilurus microdorsalis in the Family Siluridae (메기과에 속하는 메기와 미유기의 Carotenoid 색소 성분의 비교)

  • 백승한;하봉석;김수영;권문정;최옥수;배태진;강동수
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.2
    • /
    • pp.156-162
    • /
    • 2004
  • This study was performed as a part of comparative biological studies of carotenoid pigment for the unutilized biological products. The content of total carotenoid in the integument of wild catfish were 0.27(${\pm}$0.7) mg% and composed of 25.8% zeaxanthin, 9.7% diatoxanthin and 9.1 % cynthiaxanthin as major carotenoid. The content of total carotenoid in the integument of cultured catfish were 0.07(${\pm}$0.03) mg% which is relatively lower compare to wild catfish and composed of 48.5% lutein, 13.9% zeaxanthin and 13.3% isocryptoxanthin as major carotenoid. The total carotenoid contents of the slender catfish were 0.75(${\pm}$0.25) mg% which is relatively higher compare to other species of catfishes. The carotenoids were composed of 24.5% zeaxanthin, 24.1 % 7'8'-dihydro-${\beta}$-carotene-4-ol, 17.9% 7'8'-dihydro-${\beta}$-carotene and 10.8% 7'8'-dihydro-${\beta}$-carotene-3-01 as major carotenoid and 8.7% diatoxanthin, 6.7% cynthiaxanthin and 5.0% lutein as minor carotenoid. Based on these data, as a comparative studies of carotenoid in integument of siluridae, parasiloxanthin and 7',8'-dihydroparasiloxanthin which are the characteristic carotenoid of catfish from biwa lake in Japan, Slender catfish contained more based on 7',8'-dihydro-${\beta}$-carotene while that of wild and cultured catfishes were not found, indicating that carotenoid pigment of slender catfish depend on their living conditions.

Effect of Lipoxygenase, ${\beta}-Carotene$, ${\alpha}-Tocopherol$ and Water Activity on the Oxidation of Linoleic Acid in Starch-Solid Model System (고형상의 모델시스템에 있어서 리놀레산의 산화에 미치는 리폭시게나아제, 카로틴, 토코페롤 및 수분활성의 영향)

  • Kim, Hae-Gyoung;Cheigh, Hong-Sik;Song, Yeong-Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Starch solid model system was employed to investigate the effect of lipoxygenase, ${\beta}-carotene$, ${\alpha}-tocopherol$ and water activity on the oxidation of linoleic acid. The rate of oxidation of linoleic acid by lipoxygenase was increased with the increase in water activity, Addition of ${\beta}-carotene$ and ${\alpha}-tocopherol$ to this system has been shown to inhibit the oxidation of linoleic acid and ${\alpha}-tocopherol$ was more effective antioxidant than ${\beta}-carotene$. However, an increase in the concentration of ${\beta}-carotene$ was found to have a strong antioxidant effect in the solid model system. And also the antioxidative action of ${\beta}-carotene$ was increased with increasing water activity in this system.

  • PDF

Changes in Carotenoids Contents in Pureed and Cooked Carrot and Spinach during Storage (가열처리 및 저장조건에 따른 당근과 시금치퓨레의 Carotenoids 함량변화와 이성질화 형성에 관한 연구)

  • ;;Robert M, Russell
    • Korean journal of food and cookery science
    • /
    • v.19 no.1
    • /
    • pp.83-95
    • /
    • 2003
  • Investigations were conducted on the changes in carotenoids content, and quantification of cis-trans-${\beta}$-carotene Isomers in pureed and cooked carrot and spinach during storage. The isomerization and degradation of carotenoids were monitored by high-performance liquid chromatography on a C$\_$30/ reversed-phase column with diode-array detection. The results showed that lutein, ail-trans-${\beta}$-carotene, ${\alpha}$-carotene, 9-cis-${\beta}$-carotene and 13-cis-${\beta}$-carotene were present in carrot and spinach. Zeaxanthin and cryptoxanthin were present in raw spinach. The contents of lutein, zeaxanthin, cryptoxanthin, ${\alpha}$-carotene and all-trans-${\beta}$-carotene in pureed and cooked carrot and spinach decreased with increasing storage period. The 9-cis and 13-cis carotenoid isomers were the major types formed in cooked carrot during storage. Cooking was not found to alter the carotenoid profile of the sample, but increased the total amount of carotenoids compared with pured ones. This increase could be explained that cooking itself increased the extraction efficiency and inactivated the enzymes degradating carotenoids.

Kinetics of producing ${\beta}$-carotene from Dunaliella salina by Light Limited Turbidostat Cultivation (Dunaliella salina 의 광 제한 현탁 연속배양에 의한 ${\beta}$-carotene 의 생산)

  • Park, Young-Shik;You, Ho-Keum;Ohh, Shang-Jip;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.342-347
    • /
    • 1993
  • It was proved that the cell growth followed a photo-inhibition model in light-limited turbidostat cultivation, having 1.06 (1/h) of maximum specific growth rate and 0.00094(kcal/$cm^2$/h) and 0.063 (kcal/$cm^2$/h) as half saturation and light inhibition constants, repectively. ${\beta}$-carotene production showed a growth related porcess. And the activation energy of Dunaliella salina was roughly estimated as 12.36 (kcal/mole) in employing Arrhenius relationship. It should also point out that relatively much porduction of ${\beta}$-carotene was observed at hight light intensity with yieding 1.04 (mg-carotene/g-dry cell/day) of specific product production rate while the cell growth was decreased. The optimal conditions of producing ${\beta}$-carotene in turbiodostat cultivation were as follows: $7.5{\times}10^{-3}$(kcal/$cm^2$/h)of light intensity, 2 (mM) and 50(mM) of nitrate and sodium bicarbonate concentrations and 100(ml/h) of $CO_2$ flow rate.

  • PDF