• Title/Summary/Keyword: beta-C$_2$S

Search Result 1,575, Processing Time 0.031 seconds

Optimum Conversion to the Aglycone Form Using $\beta$-glucosidase and Isoflavone Extraction from Soybean (대두로부터 Isoflavone추출 및 $\beta$-glucosidase를 이용한 Aglycone 형태로의 전환 최적 조건)

  • 김기욱;전병수
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • Soybeans contain the phytoestrogens genistein and daidzein, their glucosides genistin and daidzin and coumesterol. These isoflavonoid compounds are capable of producing an estrogenic response in a number of diverse species. This study determined optimum conditions for the extraction of the main isoflavones(daidzin, genistin, daidzein, genistein) in defatted soybean meal using high-performance liquid chromatography. The best optimum extraction was achieved at 75% ethanol, $80^{circ}C$, pH4 and a three hour contact time. In addition, isoflavones with high purity were separated by adding up to 4%(w/v) of calcium chloride dihydrate. Most soybean extracts were composed of $beta$-glucosidic conjugate(daidzin, genistin) which is difficult to adsorb in body. Therefore, $beta$-glucosidase was used to convert as conjugate to aglycone form (daidzein, genistein) which is easy to adsorb. The optimal conditions of enzyme reaction involved to be 8.4 units of enzyme concentration, pH5.0, $40^{circ}C$ and 40 minutes.

  • PDF

Study on Prodrugs of $1-{\beta}-D-Arabinofuranosylcytosine$ -Preparation of araC-5'-Alkylthioacetates and Evaluation of their Physical-chemical Properties and Antitumor Activities- ($1-{\beta}-D-Arabinofuranosylcytos$의 Prodrug 연구 -AraC-5'-Alkylthioacetates 합성 및 그들의 물리.화학적 성질과 항암작용 시험-)

  • Lee, Hee-Joo;Kim, Tae-Ryun
    • YAKHAK HOEJI
    • /
    • v.32 no.5
    • /
    • pp.334-339
    • /
    • 1988
  • AraC-5'-methylthioacetate (araC-MTA, 1) and araC-5'-butylthioacetate (araC-BTA, 2) were prepared and their physical and chemical properties and in vivo antitumor activities were examined. Both compounds were found to have higher partiton coefficients (n-hexanol/water) than their parent araC and to be hydrolyzed to araC within an hour in mouse plasma and ascitic fluid solutions. In in vivo antitumor activity test they showed similar potency to araC, which were assumed due to too quick hydrolyses of them to parent in the body fluid.

  • PDF

Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass (Schizophyllum commune에 의한 Cellulase 생산 및 섬유소계 바이오매스의 당화를 위한 효소적 특성)

  • Kim, Hyun-Jung;Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Lee, Dong-Heub;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.547-560
    • /
    • 2010
  • The optimum culture condition of Schizophyllum commune for the cellulase production and its enzymatic characteristics for saccharification of cellulosic biomass were analyzed. S. commune secrets ${\beta}$-1,4-xylosidase (BXL) and cellulases, including endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), and ${\beta}$-glucosidase (BGL). The optimum reaction temperature for all cellulases was $50^{\circ}C$ and the thermostable range was $30{\sim}40^{\circ}C$C. The optimum reaction pH for all cellulases was 5.5 in a range of temperature from $0^{\circ}C$ to $55^{\circ}C$. The best nutritions for the cellulase production of S. commune among tested nutrients were 2% cellulose for the carbon source and corn steep liquor or peptone/yeast extract for the nitrogen source without vitamins. The environmental culture condition for the cellulase production was 5.5~6.0 for pH at $25{\sim}30^{\circ}C$. The enzyme activities of EG, BGL, CBH, and BXL were 3670.5, 631.9, 398.5, and 15.2 U/$m{\ell}$, respectively, after concentration forty times from the culture broth of S. commune which was grown at the optimized culture condition. Alternative filter paper unit assay showed 11 FPU/$m{\ell}$ enzyme activity. The saccharification tests using cellulase of S. commune showed the low saccharification rate on tested hardwoods but a high value of 50.5% on cellulose, respectively. The saccharification rate (50.5%) of cellulose by cellulase produced in this work is higher than 45.7% in the commercial enzyme (Celluclast 1.5L, 30 FPU/g, glucan).

Studies on the Production of $\beta$-Galactosidase by Lactobacillus sporogenes - Characterization of $\beta$-Galactosidase - (Lactobacillus sporgenes에 의한 $\beta$-Galactosidase생산에 관한 연구 -$\beta$-Galactosidase의 효소학적 성질-)

  • Kim, Young-Man;Lee, Jung-Chi;Chung, Pil-Keun;Park, Yong-Jin;Yang, Han-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.205-210
    • /
    • 1983
  • Extracellular $\beta$-galactosidase was prepared from a culture of Lactobacillus sporogenes, a spore-forming lactic acid bacterium. The enzyme functioned optimally at pH 6.8 and at 6$0^{\circ}C$ o-nitrophenyl-$\beta$-D-galactopyranoside (ONPG) in 0.05M sodium phosphate buffer. The activation energy of the enzymatic hydrolysis of ONPG was about 16,000 cal/mole below $50^{\circ}C$ and 11,300 cal/mole above the temperature. It was fairly stable over a pH range from 4.0 to 8.0 losing only less than 30% of its activity after hearting at 6$0^{\circ}C$ and pH 6.8 for 3 hours. Metal ions showed no significant effect on the enzyme activity, whereas L-cysteine exerted a slight stimulatory effect at the concentration of 10mM. The km values were 1.48mM for ONPG and 64.5mM for lactose. Hydrolysis of ONPG by the enzyme was product-inhibited by galactose (Ki=13.3mM, competitive inhibition) and by glucose(Ki= 11.4mM, uncompetitive type). The enzyme activity was also noncompetitively inhibited in the presence of lactose (Ki= 17.8mM).

  • PDF

Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향)

  • 주진영;박미림;신용덕;임승혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

Biosynthetic Regulation and Enzymatic Properties of $\beta$-Glucosidase from Cellulomonas sp. CS 1-1 (Cellulomonas sp. CS1-1으로 부터의 $\beta$-Glucosidase의 합성조절과 그의 효소학적 성질)

  • Lee, Hee-Soon;Min, Kyung-Hee;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 1988
  • $\beta$-Glucosidase of Cellulomonas sp. CS1-1 in cellular compartment was localized with cell-bound form while Avicelase and carboxymethylcellulase (CMCase) were appeared with extracellular enzyme. Cell growth on cellulose or CMC minimal broth was increased by glucose addition. $\beta$-Glucosidase production on cellobiose or CMC minimal broth was repressed by the addition of glucose. However, on CMC minimal broth, the enzyme production was specially stimulated by cellobiose addition. $\beta$-Glucosidase production was also induced by CMC, starcth and maltose compared with glycerol, arabinose, xylose and trehalose. From the above results, it was concluded that glucose effect on $\beta$-glucosidase biosynthesis showed catabolite repression, but enzyme production was induced by cellobiose, CMC, and starch, indicating that $\beta$-glucosidase is inducible enzyme. Yeast extract stimulated $\beta$-glucosidase production more than peptone and ammonium sulfate. $\beta$-Glucosidase activity was increased with 50mM MgCl$_2$in 10mM potassium phosphate buffer (pH 7.0). Optimum conditions for enzyme activities were pH 6.0 and 42$^{\circ}C$, Km value of $\beta$-glucosidase for p-nitrophenyl-$\beta$-D-glucosidase was 0.256mM and Ki for $\beta$-D(+)-glucose was 9.0mM.

  • PDF

Characterization of Noble AmpC-Type $\beta$-Lactamases Among Clinical Isolates Using New Expression/Secretion Vector (발현ㆍ분비 벡터 및 임상 균주가 생성하는 신규 AmpC-type $\beta$-lactamase의 특성)

  • 정하일;성광훈;이정훈;장선주;이상희
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2004
  • To determine evolution and genotype of new chromosomal AmpC $\beta$-lactamases among clinical isolates of Enterobacter species, we performed antibiotic susceptibility testing, pI determination, sequencing, and phy-logenetic analysis using developed expression/secretion vector. Six isolates have shown to produce AmpC $\beta$-lactamases. Six genes of AmpC $\beta$-lactamases that are responsible for the resistance to cephamycins (cefoxitin and cefotetan), amoxicillin, cephalothin, and amoxicillin-clavulanic acid were cloned and characterized in pMSG12119. Insert fragment containing the ampC genes was sequenced and found to have an open reading frame coding for 381-amino-acid $\beta$-lactamase. The nucleotide sequence of four ampC genes ($bla_EcloK992004.l$, $bla_EcloK995120.1$, $bla_EcloK99230$, and $bla_EareK9911729$) shared considerable homology with that of chromosomal ampC gene ($bla_EcloMHN1$) of E. cloacae MHN1 (more than 99.6% identity). The sequences of two ampC genes ($bla_EcloK9973$ and $bla_EcloK9914325$) showed close similarity to the chromosomal ampC gene ($bla_EcloQ908R$) of E. clo-acae 908R (99.7% identity). The results from phylogenetic analysis suggested that six ampC genes could be originated from $bla_EcloMHN1$ / or $bla_EcloQ908R$ / MIC patterns and exact pI values of six transformants indicated that the developed expression/secretion vector (pMSG1219) was suitable for the characterization of foreign genes in E. coli strain.

Optimization for Extraction of ${\beta}-Carotene$ from Carrot by Supercritical Carbon Dioxide (초임계 유체에 의한 당근의 ${\beta}-Carotene$ 추출의 최적화)

  • Kim, Young-Hoh;Chang, Kyu-Seob;Park, Young-Deuk
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.411-416
    • /
    • 1996
  • Supercritical fluid extraction of ${\beta}$-carotene from carrot was optimized to maximize ${\beta}$-carotene (Y) extraction yield. A central composite design involving extraction pressure ($X_1$ 200-,100 bar), temperature ($X_2,\;35-51^{\circ}C$) and time ($X_1$$ 60-200min) was used. Three independent factors ($X_1,\;X_2,\;X_3$) were chosen to determine their effects on the various responses and the function was expressed in terms of a quadratic polynomial equation,$Y={\beta}_0+{\beta}_1X_1+{\beta}_2X_2+{\beta}_3X_3+{\beta}_11X_12+{\beta}_22X_3^2+{\beta}_-12X_1X_2+{\beta}_12X_1X_2+{\beta}_13X_1X_3+{\beta}_23X_2X_3,$ which measures the linear, quadratic and interaction effects. Extraction yields of ${\beta}$-carotene were affected by pressure, time and temperature in the decreasing order, and linear effect of tenter point (${\beta}_11$) and pressure (${\beta}_1$) were significant at a level of 0.001(${\alpha}$). Based on the analysis of variance, the model fitted for ${\beta}_11$-carotene (Y) was significant at 5% confidence level and the coefficient of determination was 0.938. According to the response surface of ${\beta}$-carotene by cannoical analysis, the stationary point for quantitatively dependent variable (Y) was found to be the maximum point for extraction yield. Response area for ${\beta}$-carotene (Y) in terms of interesting region was estimated over $10,611{\mu}g$ Per 100 g raw carrot under extraction.

  • PDF

Characterization of Hot Deformation Behavior of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 고온변형거동 규명)

  • 염종택;김두현;나영상;박노광
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • Compression tests were carried out to investigate the hot-deformation behavior of Ti-6Al-4V alloy in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-i}$ to $10s^{-1}$. Under the given test conditions, the hot-deformation of Ti-6Al-4V alloy was mainly led by dynamic recovery rather than by dynamic recrystallization. The activation energy for the plastic deformation in $\alpha+\beta$ field was about 894 kJ/mol and $\beta$ field was 332kJ/mo1. Processing map for hot working are developed on the basis of the variations of efficiency of power dissipation($\eta$=2m/m+1) and flow instability criterion using the dynamic material model. The optimum process condition in the ($\alpha+\beta$) field was obtained at the temperature ranges of $930^{\circ}C$ to $955^{\circ}C$$^{\circ}C$ and a strain rate of $10^{-3}s{-1}$.

  • PDF

Some properties of thermostable .betha.-galactosidase of bacillus coagulans (열내성이 강한 bacillus coagulans의 $\beta$-Galactosidase의 특성에 대하여)

  • 이홍금;홍순우;하영칠;이정치;김태한
    • Korean Journal of Microbiology
    • /
    • v.18 no.1
    • /
    • pp.7-14
    • /
    • 1980
  • A thermostrable ${\beta}-galactosidase$ (${\beta}-galactoside$ galactohydorlase, EC 3.2.1.23) was inducible in Bacillus coagulans by lactose and D-glactose. The enzyme was purified 87 fold, and the optimum temeprature and pH for actiivity were determined to be $60^{\circ}C$ and pH 7.5, respectively. Kinetic determinations at $55^{\circ}C$ established a Km of 3.3mM for the chromogenic substrate onitorphenyl ${\beta}-D-galactopyranoside$ (ONPG). Galactose and lactose were competitive inhibitors with Ki of 6.1mM and 4.9mM, respectively. The enzyme ws relatively thermostable. The crude enzyme was inactivated about 20% after 20 min of exposure at $60^{\circ}C$ and the purified was about 50%. Maximal enzyme activity required $Mn^{++}$, and for the thermal stabilization $Fe^{++}\;and\;Ca^{++}$ were necessary.

  • PDF