• 제목/요약/키워드: benzene, toluene, and xylenes

검색결과 37건 처리시간 0.028초

Cometabolic Removal of Xylene Isomers by Alcaligenes xylosoxidans Y234

  • Yeom, Sung-Ho;Lee, Jung-Heon;Yoo, Young Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.222-228
    • /
    • 1998
  • The characteristics of cometabolic removal of xylenes by Alcaligenes xylosoxidans Y234 were investigated. m-Xylene was found to be degraded while ο- and p-xylene were biotransformed into cresols in the presence of benzene or toluene. A lower level of benzene was required than that of toluene to remove the same amount of xylenes, which suggested benzene was a more effective primary substrate than toluene. ο-Xylene was found to be the most toxic to Alcaligenes xylosoxidans Y234 followed by p-xylene and m-xylene. Rates of cell decay during cometabolic removal of ο-, m-, or p-xylene were decreased by up to $76\%$ when benzene-adapted cells were inoculated. Xylenes were removed efficiently using benzene-adapted cells.

  • PDF

BTX(Benzene, Toluene, Xylenes)의 자연발화온도와 발화지연시간의 측정 (Measurements of Autoigniton Temperature(AIT) and Time Lag of BTX(Benzene, Toluene, Xylenes))

  • 하동명
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.45-52
    • /
    • 2006
  • The AITs(autoignition temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are often used as a factor in determining the upper temperature limit for processing operations and conditions for handling, storage and transportation, and in determining potential fire hazard from accidental contact with hot surfaces. The measurement AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, time lag. Therefore, the AITs reported by different ignition conditions are sometimes significantly different. This study measured the AITs of benzene, toluene and xylene isomers from time lag using AS1M E659-78 apparatus. The experimental ignition delay times were a good agreement with the calculated ignition delay times by the proposed equations wtih a few A.A.D.(average absolute deviation). Also The experimental AITs of benzene, toluene, o-xylene, m-xylene and p-xylene were $583^{\circ}C,\;547^{\circ}C,\;480^{\circ}C,\;587^{\circ}C,\;and\;557^{\circ}C$, respectively.

토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응 (Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms)

  • 라현주;장순웅;이시진
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.375-383
    • /
    • 2000
  • 유일로 오염된 지역의 토양에서 toluene을 탄소원으로 이용하는 혼합미생물을 분리하여 toluene, benzene, ethylbenzene 및 xylene isomers(BTEX)의 분해특성을 관찰하였다. 단일기질 실험에서는 모든 BTEX의 분해가 이루어졌으며 toluene, benzene, ethylbenzene, p-xylene 순서로 분해되었다. BTEX 혼합기질 분해실험에서는 단일기질일 때보다 분해속도가 상대적으로 느려졌으며, ethylbenzene이 benzene보다 먼저 분해되는 것이 관찰되었다. 이중 혼합물질 반응 실험에서는 방해작용(inhibition), 촉진작용(stimulation), 그리고 비반응(non-interaction)과 같은 다양한 기질반응이 관찰되었으며, ethylbenzene은 benzene, toluene, xylene의 분해에 강한 방해영향을 주었다. Xylene 분해특성에서 m- 및 p-xylene은 혼합미생물에 탄소원으로 이용되었으며 benzene이나 toluene이 동시에 존재할 때는 xylene isomer의 분해가 촉진되었다. 그러나 o-xylene의 분해는 benzene에 의해서만 촉진되었다.

  • PDF

광화학적 방법을 이용한 휘발성 방향족 화합물의 분해 (Decomposition of volatile aromatic compounds by photochemical treatment)

  • 김종향
    • 청정기술
    • /
    • 제4권1호
    • /
    • pp.35-44
    • /
    • 1998
  • 휘발성 유기화합물(벤젠, 톨루엔, 에틸벤젠, 크실렌)의 광분해를 단순 UV조사와 $TiO_2$ 광촉매하의 UV조사를 이용하여 연구하였고 또한 여러 가지 반응조건에 따른 분해효율에 대해 고찰하였다. 광분해반응기는 중압 수은램프가 부착된 석영 annular 반응기를 이용하였다. UV조사에 의한 휘발성유기화합물의 분해정도는 톨루엔 92% ${\geq}$ 에틸벤젠 92% > 벤젠 83% > 크실렌 82% 였고, $TiO_2$ 광촉매하의 UV조사를 이용한 유기물의 분해정도는 톨루엔 92% > 크실렌 82% > 에틸벤젠 80% > 벤젠 53% 였다. 반응물의 분석은 Purge & Trap 농축기를 이용하여 FID가 부착된 GC로 분석하였고, GC-MS로 반응물의 중간생성물을 확인하였다.

  • PDF

고속도로 터널내부 공기 중 휘발성 유기화합물의 농도 측정 (Measurement of Volatile Organic Compounds Concentrations in the Air of a Highway Tunnel)

  • 백성옥;김영민;황승만
    • 한국대기환경학회지
    • /
    • 제14권1호
    • /
    • pp.73-77
    • /
    • 1998
  • In this study, a total of 10 volatile organic compounds (VOCs) including BTEX were determined in the inside and outside of a highway thnnel in order to evaluate the emission profile of automobile exhaust with respect to the concentrations, relative ratio and correlation coefficient of target analytes. In addition to VOCs, CO $CO_2 and NO_2$ were measured simultaneously. The results of this study indicated that the most abundant compound was toluene followed by benzene and m+p-xylenes, and the correlation coefficients between VOCs except styrene were higher than 0.96. The concentration ratio of toluene, ethylbenzene, xylenes with respect to benzene measured in the inside of tunnel was 1.5, 0.13, 0.74, respectively. Such ratios were found to be very similar to those measured in tunnels in the USA.

  • PDF

Aquifer Microcosm 실험을 통한 BTEX 생분해에 관한 연구 (Aquifer Microcosm Test for BTEX Biodegradation)

  • 박재형;권수열;고석오;최의소
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.163-166
    • /
    • 2000
  • The purpose of this study is to evaluate substrate interactions of BTEX for multicomponent. Although BTEX compounds have similar chemical structures, biodegradation of individual BTEX is different with the present of certain BTEX compounds. The biodegradation rate is order to Benzene=Toluene>Ethylbenzene> m, p-Xylene>o-Xylene. Xylenes is stimulated when benzene or toluene is present. Especially o-xylene Inhibit other BTEX compounds.

  • PDF

Early Liver and Kidney Dysfunction Associated with Occupational Exposure to Sub-Threshold Limit Value Levels of Benzene, Toluene, and Xylenes in Unleaded Petrol

  • Neghab, Masoud;Hosseinzadeh, Kiamars;Hassanzadeh, Jafar
    • Safety and Health at Work
    • /
    • 제6권4호
    • /
    • pp.312-316
    • /
    • 2015
  • Background: Unleaded petrol contains significant amounts of monocyclic aromatic hydrocarbons such as benzene, toluene, and xylenes (BTX). Toxic responses following occupational exposure to unleaded petrol have been evaluated only in limited studies. The main purpose of this study was to ascertain whether (or not) exposure to unleaded petrol, under normal working conditions, is associated with any hepatotoxic or nephrotoxic response. Methods: This was a cross-sectional study in which 200 employees of Shiraz petrol stations with current exposure to unleaded petrol, as well as 200 unexposed employees, were investigated. Atmospheric concentrations of BTX were measured using standard methods. Additionally, urine and fasting blood samples were taken from individuals for urinalysis and routine biochemical tests of kidney and liver function. Results: The geometric means of airborne concentrations of BTX were found to be $0.8mg\;m^{-3}$, $1.4mg\;m^{-3}$, and $2.8mg\;m^{-3}$, respectively. Additionally, means of direct bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea and plasma creatinine were significantly higher in exposed individuals than in unexposed employees. Conversely, serum albumin, total protein, and serum concentrations of calcium and sodium were significantly lower in petrol station workers than in their unexposed counterparts. Conclusion: The average exposure of petrol station workers to BTX did not exceed the current threshold limit values (TLVs) for these chemicals. However, evidence of subtle, subclinical and prepathologic early liver and kidney dysfunction was evident in exposed individuals.

UV조사에 의한 방향족오염물의 분해 (Degradation of Aromatic Pollutants by UV Irradiation)

  • 민병철;김종향;김병관
    • 공업화학
    • /
    • 제8권3호
    • /
    • pp.502-509
    • /
    • 1997
  • 방향족 오염물을 UV산화-고도산화처리기술로 처리할 때, 여러 가지 반응조건에 따른 분해효율에 대해 고찰하였다. 벤젠 50ppm, 에틸벤젠 150ppm, 크실렌 250ppm을 각각 초기농도로하여 UV조사 하에서 시간변화에 따른 분해실험을 행한 결과, 반응 1시간 후 약 95% 이상의 분해율을 나타내었으나, 톨루엔의 경우에는 43%의 분해율을 보였다. 단일성분이 혼합성분에서 보다 분해가 좋았으며, pH변화에서는 벤젠은 pH변화에 관계없이 분해가 잘 되었으며, 에틸벤젠 92%(pH 4.0), 90%(pH 6.4), 91%(pH 10.0), 크실렌 95%(pH 4.0), 90%(pH 6.4), 92%(pH 10.0), 그러나 톨루엔은 80%(pH 4.0), 43%(pH 6.4), 70%(PH 10.0)의 분해율을 나타내었다. 방향족 오염물의 TOC 감소는 에틸벤젠을 제외하고는 유사 1차 반응속도식에 일치하였으며, 이로부터 속도상수를 결정할 수 있었다.

  • PDF

대도시 교통밀집지역 도로변 대기 중 휘발성유기화합물의 농도분포 특성 (Characteristics of Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in a Large Urban Area)

  • 백성옥;김미현;박상곤
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.113-126
    • /
    • 2002
  • This study was carried out to evaluate the temporal (daily, weekly, and seasonal) variations of volatile organic compounds (VOCs) concentrations at a road-side site in a heavy-traffic central area of Metropolitan Taegu. Ambient air sampling was undertaken continuously for 14 consecutive days in each of four seasons from the spring of 1999 to the winter of 2000. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. A total of 10 aromatic VOCs of environmental concern were determined, including benzene, toluene, ethylbenzene, m+p-xylenes, styrene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene. Among 10 target VOCs, the most abundant compounds appeared to be toluene (1.5 ∼ 102 ppb) and xylenes (0.1 ∼ 114 ppb), while benzene levels were in the range of 0.3 ∼6 ppb. It was found that the general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours (AM 7∼9 and PM 7 ∼9). However, some VOCs such as toluene, xylenes, and ethylbenzene were likely to be affected by a number of unknown sources other than vehicle exhaust, being attributed to the use of paints, and/or the evaporation of solvents used nearby the sampling site. In some instances, extremely high concentrations were found for these compounds, which can not be explained solely by the impact of vehicle exhaust. The results of this study may be useful for estimating the relative importance of different emission sources in large urban areas. Finally, it was suggested that the median value might be more desirable than the arithmetic mean as a representative value for the VOC data group, since the cumulative probability distribution (n=658) does not follow the normal distribution pattern.

대도시 및 주변 교외지역의 대기 중 휘발성 유기화합물 농도 비교에 관한 연구 (A Study on the Comparison of Atmospheric Concentrations of Volatile Organic Compounds in a Large Urban Area and a Sub-Urban Area)

  • 박지혜;서영교;백성옥
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.767-778
    • /
    • 2006
  • This study was carried out to evaluate the temporal variations of VOCs at an urban site, and to compare the concentrations of VOCs at an urban site in Daegu with those at a suburban site in Gyeongsan. Three hourly VOC samples in the ambient air were collected using a sequential tube sampler (STS 25, Perkin Elmer) throughout two weeks during May and July representing spring and summer seasons, respectively. The VOC concentrations were determined by an automatic thermal desorption apparatus with GC/MS analysis. A total of 12 VOCs of environmental concern were determined, which are chloroform, benzene, trichloroethylene, toluene, tetra-chloroethylene, ethylbenzene, m+p-xylenes, o-xylene, styrene, 1,3,5- and 1,2,4-trimethylbenzenes. Among 12 target VOCs, the most abundant compound appeared to be toluene, being followed by xylenes. The mean concentrations at the urbn site were 1.2 pub for benzene and 20.4 ppb for toluene (n=221) while the mean levels at the suburban site were 0.9 ppb and 4.3 ppb for benzene and toluene (n=96), respectively. The urban site concentrations were typically several-fold higher than those measured at the suburban site. It was found that general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours, i.e. $9{\sim}12a.m$ and $6{\sim}9p.m$. Statistical investigations were conducted to investigate any significant relationships between VOC concentrations and affecting factors. Calculated correlation coefficients among VOCs were positively significant at a level of 0.05 in most cases. Increased concentrations of toluene in the urban site were estimated to reflect the effect of large industrial sources, mainly from textile industry.