• Title/Summary/Keyword: bentonite pellet

Search Result 13, Processing Time 0.017 seconds

Physical Characteristics and Germination of Pelleted Tobacco Seeds Depending on Moulding Materials (성형재료에 따른 담배 펠렛 종자의 물리적 틀성과 발아율)

  • 민태기;박민숙;이석순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.535-541
    • /
    • 1996
  • A seed pelleting technique was developed for easy handling of small tobacco seeds (variety, NC82) and for direct seeding in temperary planting bed or in field. The mixture of pelleting material, binder and seeds were moulded in cylindrical holes sized 2 mm diameter and 2 mm height in a plastic plate. Bentonite and cellulose powder were good materials to make pellets with CMC as binder, and bentonite formed the hardest pelleted seeds among the materials. The number of the pelleted seeds made with the same weight of the materials was different with materials used and the number of seeds contained in a pelleted seed could be controlled by mixture ratio of materials and seeds. The seedless pellets ranged 6.9 to 16.0% at the ratio of pelleting material and seed for 2~3 seeds in a pellet. The moisture absorption rate at 100% RH and $25^{\circ}C$ was greater in the order of clay < bentonite < cellulose. Germination rates of pelleted seeds with bentonite and cellulose were similar to that of usual seed, but it was significantly lower with clay pelleted seeds.

  • PDF

Bentonite Pellet을 이용한 정호내부 그라우팅

  • 김무진;함세영;황한석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.228-230
    • /
    • 2001
  • 지하수 개발·이용을 위한 정호심도는 지속적으로 증가하는 추세이다. 이에 따라 보다 깊은 심도에서 또는 특정한 대수층에서의 대수성시험 및 오염방지를 위한 그라우팅 기술이 필요 하다. 기존의 팩커기술이 이를 기술적으로 만족시키고 있지만, 일반적인 정호에서는 경제성과 공정의 복잡성 때문에 적용이 보편화되어 있지 않다. 그러나 bentonite pellet을 이용하여, 간단하고 경제적으로 이 문제를 해결할 수 있다.

  • PDF

Factors Affecting Pellet Formation of Phosphate-solubilizing Fungus, Aspergillus sp. PS-104 in Submerged Culture (인산가용화균 Aspergillus sp. PS-104의 액침배양중 Pellet 크기에 영향을 주는 요인)

  • Shin, Seung-Yong;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.77-81
    • /
    • 2007
  • In order to minimize the mycelial pellet size of a high phosphate-solubilizing fungus, Aspergillus sp. PS-104 in liquid media, one of the critical obstacles during the submerged culture of filamentous fungi, an investigation was focused on the culture conditions (media and inoculum size) and additives (different soils, surfactants and polyethylene glycol 200). When the fungus was cultured in PDB, SDB and YPD media. their pellet sizes decreased in the order of SDB=YPD>PDB. At the higher concentrations of initial inoculum ranging from $1{\times}10^3$ to $1{\times}10^7$ conidia/ml, the smaller size of pellet was formed in the PDB medium. In addition, the pellet size was effectively reduced by 1/6${\sim}$1/4 by the addition of 0.1% soil containing zeolite, diatomite, loess, kaoline and talc, excluding bentonite. The addition of 0.1% Tween 80, Triton X-100 and PEG 200 also decreased the pellet size, but SDS completely inhibited the fungal growth.

Culture Conditions and Additives Affecting to the Mycelial Pellet Size of Penicillium sp. GL-101 in the Submerged Culture (Penicillium sp. GL-101의 액침배양중 Mycelial Pellet 크기에 영향을 주는 배양조건 및 첨가물)

  • Lee, Dong-Gyu;Ha, Chul-Gyu;Lee, Tae-Geun;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.188-192
    • /
    • 1999
  • In order to minimize the mycelial pellet formation, one of the critical obstacles during the fermentation processes of filamentous fungi, an investigation was focused on the culture conditions(media and initial inoculum) and additives(soils, surfactants and polyethylene glycol 200) when a high phosphate-dissolving fungus, Penicillium sp. GL-101, was cultured in liquid media. Culturing the strain in PDB, SDB and YPD media, their pellet sizes decreased to the order of YPD > SDB > PDB. And at the high concentrations of the initial inoculum in the range from $1{\times}10^3\;to\;1{\times}10^6$ conidia/ml, the small sizes of pellet were formed in the PDB media. For the initial inoculum between $1{\times}10^7\;and\;1{\times}10^8$ conidia/ml, however, an amorphous pellet or loose aggregate was formed. The addition of soils, zeolite and diatomite, up to 1.0% decreased the pellet sizes to 3/4 and 1/2, respectively, but the pellet was increased to 2.5 times by the addition of bentonite. Surfactants also affected on the size of pellet; the addition of Triton X-100 and Tween 80 up to 1.0% decreased the pellet sizes maximally to 1/10 and 1/4, respectively, while SDS completely inhibited the fungal growth. Among the four additives tsted, polyethylene glycol 200 was the most effectively reduced the pellet sizes to $0.2{\pm}0.1$mm that resulted in about 25- fold reduction compared to the control.

  • PDF

Development of Seed Pelleting Technology for Rice and Cabbage (벼 및 배추종자 Pelleting을 물질채색 및 기술개발)

  • 민태기
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.678-684
    • /
    • 1996
  • Seed pelleting have successfully been used in many crops for better crop estab-lishment and for mechanizing seeding process for small crop seeds in developed countries. In this experiment various pelleting materials and binders were tested to get basic information on the shape, hardness and germination of pelleted seesds of cabbage (cv. Seoul Beachoo) and rice (cv: Ilpoom). PLL-11, paper clay, lime and coal ash were good materials to make smooth shape of the pellets with pel gel and AG-11 as binders, and PLL-ll as material and pelgel and AG-11 as binders were the best among them in consideration of shape and hardness together. The hardness of the pelleted seeds were differed with each other depending on both of the pelleting materials and binders. Pelleted cabbage seeds coated by pelgel as binder with different materials showed lower germination percentge than control in general, but the seeds pelleted by PLL-11 with different binders showed no restraint effects. When the cabbage seed pelleted by PLL-11 with pelgel as binder showed almost same germination percentage as control. The pH and electrical conductivity of the extract from bentonite and zeolite were very higher than other materials tested and germination percentage showed a little lower than control when the cab-bage seed planted on the filter paper damped with the extract. As a result, PLL-11 as pelleting material and pel gel and AG-11 as binder appeared the good materials to make pellets of cabbage seeds and rice in consideration of shape, hardness and germination.

  • PDF

Characteristics of Pellet Seed on Germination and Emergence in Onion(Allium cepa L.) (양파 Pellet 종자의 발아 및 포장출아 특성)

  • 이성춘;박상욱
    • Korean Journal of Plant Resources
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 2000
  • This study was conducted to evaluate development of seed pellet technique such as pellet polymer search, the shape formation and hardness, the germination and emergence rate of the pellet seeds for labor-saving and reducing production cost in onion(Allium cepa L.) cultivation. The pellet seeds shape formation was good such as kaolin, clay, ash, and gypsum, and clay was good shape formation but surface of pellet seed was cracked during the drying. PG(pearlite + gypsum) as pellet material and PVA as binder were the best among the material in consideration with shape and hardness together. The hardness of the pellet seeds was affected by polymers, the kinds and concentration of binders, and that degree was large at polymer. The high hardness polymers were gypsum and coal ash, but burned lime was the lowest hardness among the pellet material. The germination(GP) and emergence percentage(EP) of pellet seed with PG in vitro were the highest among the material, and that was 93.6, 91.8%, respectively. The EP of pellet seed with PG at 20, $25^{\circ}C$ were 91.3, 92.0%, respectively, The EP of pellet seed were over the 91%, and those did not show difference with field moisture capacity , and that of 5 and 6mm size seed were the highest as 92%, respectively. and other size seeds showed over 90%, too. The EP of pellet seed with PG was decreasing as increasing the sowing depth, and that of at 10mm sowing depth was the highest as 92.7%. The time to 50% emergence of that under 70% field moisture capacity was 158h, and that was delayed at 20h compare to control seed.

  • PDF

An experimental study on the preparation and property of the sintering aggregate using fly ash (플라이애쉬를 이용한 소성골재의 제조 및 특성에 관한 연구)

  • 박대영;김도수;박종현;임채영;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.239-244
    • /
    • 1998
  • Fusion temperature of fly ash was determined with wasted glass wool and borax using ash fusion determinator, 0.5wt% of bentonite and water glass used as binder, 50wt% of wasted glass wool added to fly ash, fusion temperature of fly ash was 1, 156$^{\circ}C$. Pellet was prepared, and then sintered at 1, 00$0^{\circ}C$ and 1, 10$0^{\circ}C$. Water-absorption rate, specific gravity, porosity and pore structure of sintering aggregate was determined.

  • PDF

Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds (펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1701-1708
    • /
    • 2007
  • Seed pelleting is generally conducted in order to save the labor for sowing and thinning by enabling the precision mechanical planting. In the present study, the influence of physical and chemical properties of pelleting solid materials was investigated on carrot seed germination. Among the pelleting solid materials evaluated, dialite, kaolin, and talc showed low bulk density and high porosity. Bentonite and dialite carried high water holding capacities of 184% and 173%, respectively, while calcium carbonate, calcium oxide, and fly ash showed relatively low water holding capacity. The pH of kaolin (6.8) and dialite (7.4) were close to neutral, while limestone (12.8), calcium oxide (13.0), and bentonite (10.0) were highly basic. High electro-conductivity was shown in limestone and calcium oxide. EDS analysis revealed that the main elemental compositions of talc were Si (71.0%) and Mg (29.0%), and those of calcium carbonate were Ca (66.6%), Si (22.9%), and Mg (10.5%). High granulation capacity was observed from talc and the mixture of talc and calcium carbonate. Seeds pelleted with bentonite showed the highest hardness. The dissolving type of the pellet layer after imbibition was split type in talc, limestone, zeolite, and fly ash, melt type in calcium carbonate and calcium oxide, and swell type in bentonite and vermiculite. The shortest dissolving time of pellet layer was observed from calcium carbonate and kaolin. The germination speed $(T_{50})$ was delayed as the size of pelleted seeds increased. The optimum size of pelleting was 19 ratio in carrot.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

Physical properties, released patterns and bio-efficacy of granular mixtures with chlomethoxyfen and butachlor formulated by different methods (제조방식을 달리한 chlomethoxyfen과 butachlor 혼합입제의 물리성, 수중용출도와 생물효과 비교)

  • Chung, Bong-Jin;Yeon, Jae-Heum
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.36-44
    • /
    • 1998
  • To develope cost-effective new granular formulation of mixture with 7.0% chlomethoxyfen and 3.5% butachlor, this study was conducted by investigation of floatability, dispersibility or collapsability and released concentration of active ingredients in water and bio-efficacies of the granules formulated by different formulation methods compared to commercial pellet-extruded granules. They were formulated by coating on or impregnation into extruded pellets, sands and zeolites with two active ingredients, binders, friction reducer, dispersing agents and bentonite. Pellet-coated method showed similar floatability, collapsability and bio-efficacy to the commercial pellet-extruded one or better than that but unstable patterns of released concentration of chlomethoxyfen because of easy isolation of coated technical particles from the surface of granules. Sand-coated methods showed similar physical properties, released pattern of two active ingredients, and bio-efficacy to the commercial one. Liquid binders and/or dispersing agents are more important than powdered ones to control released concentration of active ingredients from the granule mixtures, to improve the floatability and dispersibility, and to show good bio-efficacy. Sand-coated one might be a suitable method if types and amount of liquid binders and dispersing agents are selected.

  • PDF