• 제목/요약/키워드: beneficial microorganisms

검색결과 137건 처리시간 0.037초

유용미생물 (EM, Effective Microorganisms)의 활용 현황 (Current Status of EM (Effective Microorganisms) Utilization)

  • 문윤희;이광배;김영준;구윤모
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.365-373
    • /
    • 2011
  • Effective Microorganisms (EM), a fermented medium developed by Professor Higa at the University of the Ryukyus, is a mixed culture containing dozens of microorganisms which are beneficial to nature including people, animals, plants and many microbial species in environment. EM is known to contain more than 80 kinds of anaerobic or aerobic microbes including photosynthetic bacteria, lactic acid bacteria, yeast, actinomycetes, fungi and so on, with yeast, lactic acid bacteria and photosynthetic bacteria as the main species of EM. Antioxidant effect generated by the concert of complex coexistence and coprosperity among these microbes is considered to be the main source of EM benefits. Currently, EM is earning an increasing attention with applications in agriculture, forestry, animal husbandry, fisheries, environment and medicine among others. At the same time, however, a quantitative interpretation of EM system based on a mixed culture model needs efforts from biochemical engineers for efficient production and further promotion of EM. In this paper, we describe the functions of major microbes in EM and current researches and applications of EM in agriculture, forestry, animal husbandry, fisheries, environment and medicine.

Bioactive secondary metabolites produced by fungi

  • Shim, Sang Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.49-49
    • /
    • 2018
  • A variety of bioactive secondary metabolites have been reported from plant-associated microorganisms. Halophytes, plants that can only grow in hypersaline area, were reported to host beneficial microorganisms such as plant growth-promoting endophytes. The microorganisms have been reported to show notable mutualistic symbiosis with halophytes to help them survive in high saline condition. Finding out bioactive secondary metabolites as well as elucidation of relationship(s) between microbes and the host halophyte has been paid attention, because of their functional diversity. Novel microbes often have associated with novel natural products. In an effort to investigate natural compounds with interesting structures from fungi, we selected plants from a distinct environmental setting which could be a promising source. Several fungi were isolated from halophyte or medicinal plants. Some strains of the fungi were cultivated on a large scale and extracted with ethyl acetate, which were subjected to a series of chromatographic methods, leading to the isolation of tens of compounds. The isolated compounds were identified by analysis of spectroscopic methods such as 1D-, 2D-NMR, and MS. Details of isolation, structure determination, and biological activities will be discussed.

  • PDF

프로바이오틱스, 프리바이오틱스 및 신바이오틱스 연구동향 (Trends in studies on probiotics, prebiotics, and synbiotics)

  • 문기성
    • 식품과학과 산업
    • /
    • 제52권3호
    • /
    • pp.208-219
    • /
    • 2019
  • Probiotics are very closely related to gut microbiome and recognized as beneficial microorganisms for our health. They have various biological effects such as inhibition of pathogenic bacteria, activation of beneficial bacteria, prevention of diarrhea and constipation, enhanced immune activity etc. Prebiotics, non-digestible carbohydrates such as galactooligosaccharide and fructooligosaccharide, are utilized by beneficial gut bacteria such as bifidobacteria and lactobacilli, resulting in production of short chain fatty acids which inhibit pathogenic bacteria in the gut and function for human health. Synbiotics are introduced for synergistic effects when probiotics are combined with prebiotics and now commercially available. At the moment many functional ingredients are developed and commercialized. Probiotics, prebiotics, and synbiotics might be hot items in the functional food market and the values will increase according to the results of human gut microbiome researches. To meet the situation, systematic and scientific studies as well as marketing effects should be accompanied.

Effects of Microbe-inoculated Expanded Rice Hull on Growth, Yield and Grain Quality of Rice

  • Kim, Young Jun;Nunez, John Paolo;Seo, Pil Dae;Ultra, Venecio U. Jr.;Lee, Sang Chul
    • 한국작물학회지
    • /
    • 제58권1호
    • /
    • pp.78-83
    • /
    • 2013
  • The excessive and indiscriminate use of chemical fertilizers in the past has brought serious soil and other environmental problems so alternatives over this agrochemical are being searched. Our study focuses on the effects of expanded rice hull inoculated with selected beneficial microorganisms on growth (through agronomic characters), yield and yield components, and grain quality indices of rice. Results showed that favorable effects of different expanded rice hull preparations were not readily apparent at vegetative stage and only treatments with supplemental chemical fertilizer application were comparable with the conventional practice. Expanded rice hull combined with 50% rate of chemical fertilizer exhibited a significantly higher yield (6,471 kg $ha^{-1}$) over conventional practice (5,719 kg $ha^{-1}$). Good milling quality indices were observed in treatments having 50% chemical fertilizers plus alternatives from expanded rice hull. Finally, we demonstrated that chemical fertilizer rate can potentially be reduced into 50% if combined with expanded rice hull, and show even better output than chemical fertilizer alone.

Complete genome sequence of Pediococcus acidilactici CACC 537 isolated from canine

  • Jung-Ae Kim;Hyun-Jun Jang;Dae-Hyuk Kim;Youn Kyoung Son;Yangseon Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권5호
    • /
    • pp.1105-1109
    • /
    • 2023
  • Pedi coccus acidilactici CACC 537 was isolated from canine feces and reported to have probiotic properties. We aimed to characterize the potential probiotic properties of this strain by functional genomic analysis. Complete genome sequencing of P. acidilactici CACC 537 was performed using a PacBio RSII and Illumina platform, and contained one circular chromosome (2.0 Mb) with a 42% G + C content. The sequences were annotation revealed 1,897 protein-coding sequences, 15 rRNAs, and 56 tRNAs. It was determined that P. acidilactici CACC 537 genome carries genes known to be involved in the immune system, defense mechanisms, restriction-modification (R-M), and the CRISPR system. CACC 537 was shown to be beneficial in preventing pathogen infection during the fermentation process, help host immunity, and maintain intestinal health. These results provide for a comprehensive understanding of P. acidilactici and the development of industrial probiotic feed additives that can help improve host immunity and intestinal health.

유용미생물을 적용한 선박오수용 SBR공정에 관한 연구 (Shipboard sewage treatment by Sequence Batch Reactor utilizing Beneficial Microorganisms)

  • 김인수;이언승;하신영;오염재;;고성철
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2010년도 추계학술대회
    • /
    • pp.36-37
    • /
    • 2010
  • 본 연구는 선박용 오폐수처리장치 개발을 위하여 기존의 활성슬러지로 운영하는 SBR공법에 유용미생물제제(BM)를 투입하여 Lab scale의 기초 실험을 수행하였다. 장치 운영 결과 BM 도입 시 SBR의 단일 공정으로 IMO의 규제 기준을 모두 만족하였으며, 오염물질의 처리 효율 향상과 더불어 안전적인 유출수질을 나타내었다. 또한 생물학적 처리 시 발생할 수 있는 악취 문제와 미생물의 효과적인 제어가 가능하여 오수처리 공정 관련 전문가가 동승할 수 없는 선박이라는 특수 환경을 고려할 때 BM의 적용은 매우 유용할 것으로 판단된다.

  • PDF

유용한 바실러스의 토양 접종에 따른 토착 세균 군집의 변화 (Changes in Resident Soil Bacterial Communities in Response to Inoculation of Soil with Beneficial Bacillus spp.)

  • 김이슬;김상윤;안주희;상미경;원항연;송재경
    • 한국미생물·생명공학회지
    • /
    • 제46권3호
    • /
    • pp.253-260
    • /
    • 2018
  • 유용미생물은 임업과 축산 분야에 활용될 뿐만 아니라 병해충 방제와 작물 생육 증진 등의 용도로 농업에서 널리 이용되고 있다. 하지만 유용미생물의 토양에서의 생존율과 정착율에 대한 연구는 미미한 형편이다. 본 연구에서는 마이크로코즘을 이용해 바실러스 3 균주를 토양에 처리한 후, 이들의 토양 내 생존능을 정량 PCR을 이용하여 13일 동안 정량적으로 분석하였다. 또한 Illumina MiSeq 플랫폼을 이용하여 바실러스 3 균주 처리구와 대조구의 토양미생물 군집 분포를 비교 및 분석하였다. 바실러스 3 균주의 처리 직후 토양 내 밀도는 건조토양 1 그람당 평균 $4.4{\times}10^6$ 유전자수로 대조구에 비해 1,000배 이상 높았다. 바실러스 균주의 토양 내 밀도는 처리 후 약 일주일 간 유지되었고 그 후부터는 유의성 있게 감소하였지만 여전히 대조구보다 100배 이상 높았다. 바실러스 균주 처리 후 토양 내 미생물 군집 구조 분석 결과, 대조구와 처리구 모두 Acidobacteria 문($26.3{\pm}0.9%$), Proteobacteria 문($24.2{\pm}0.5%$), Chloroflexi 문($11.1{\pm}0.4%$), Actinobacteria 문($9.7{\pm}2.5%$)에 속하는 세균이 우점하였다. 대조구 대비 처리구에서 Actinobacteria 문의 비율은 뚜렷하게 감소하였지만 Bacteroidetes 문과 Firmicutes 문의 비율은 증가하는 경향이었다. 속 수준에서 바실러스 3 균주를 처리함에 따라 일부 세균 군집의 종 풍부도를 변화되었고, 결국 전체 토착 미생물 군집 구조가 변화되었음을 확인할 수 있었다. 본 연구에서 수행한 유용한 바실러스의 토양 접종 후 이들의 토양 내 생존능 분석 및 토착 세균 군집의 변화는 유용미생물을 생물적 제제로 시설재배지에 사용할 때 중요한 정보를 제공할 것으로 판단된다.

Deproteinized Mulberry Leaf Juice - A New Media for Growth of Microorganisms

  • Chowdary, N.B.;Naik, V.Nishitha;Sharma, D.D.;Govindaiah
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제5권2호
    • /
    • pp.217-220
    • /
    • 2002
  • Mulberry being a foliage crop is grown extensively for feeding of silkworms and are also used for cattle feeding. These loaves are highly nutritious, which contain various mineral elements and bio-molecules such as carbohydrates, proteins, lipids and other essential amino acids, etc. In the present study, deproteinized mulberry leaf juice was used for preparation of the medium for cultivation of various types of microbes. Results revealed that deproteinized mulberry leaf juice medium is best for isolation of fungi, bacteria and actinomycetes and this medium can be substituted with synthetic media, which are haying the costly ingredients for isolation and identification of bacteria, fungi and actinomycetes. Further, this deproteinized mulberry juice medium can also be used in mass multiplication of useful/beneficial microbes to enhance soil microflora to improve soil fertility and to avoid root diseases. Perspective enterprises can take up the mass multiplication/large-scale production of useful microbes such as Trichoderma, Rhizobium, Pseudomonas and Bacillus to use in mulberry and in other agricultural crops using deproteinized mulberry leaf juice.

Microencapsulation of Live Probiotic Bacteria

  • Islam, Mohammad Ariful;Yun, Cheol-Heui;Choi, Yun-Jaie;Cho, Chong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1367-1377
    • /
    • 2010
  • Scientific research regarding the use of live bacterial cells for therapeutic purposes has been rapidly growing over the years and has generated considerable interest to scientists and health professionals. Probiotics are defined as essential live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Owing to their considerable beneficial health effects, these microorganisms are increasingly incorporated into dairy products; however, many reports have demonstrated their poor survival and stability. Their survival in the gastrointestinal tract is also questionable. To overcome these problems, microencapsulation techniques are currently receiving considerable attention. This review describes the importance of live probiotic bacterial microencapsulation using an alginate microparticulate system and presents the potentiality of various coating polymers such as chitosan and polylysine for improving the stability of this microencapsulation.