Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03020

Microencapsulation of Live Probiotic Bacteria  

Islam, Mohammad Ariful (Department of Agricultural Biotechnology, Seoul National University)
Yun, Cheol-Heui (Department of Agricultural Biotechnology, Seoul National University)
Choi, Yun-Jaie (Department of Agricultural Biotechnology, Seoul National University)
Cho, Chong-Su (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1367-1377 More about this Journal
Abstract
Scientific research regarding the use of live bacterial cells for therapeutic purposes has been rapidly growing over the years and has generated considerable interest to scientists and health professionals. Probiotics are defined as essential live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Owing to their considerable beneficial health effects, these microorganisms are increasingly incorporated into dairy products; however, many reports have demonstrated their poor survival and stability. Their survival in the gastrointestinal tract is also questionable. To overcome these problems, microencapsulation techniques are currently receiving considerable attention. This review describes the importance of live probiotic bacterial microencapsulation using an alginate microparticulate system and presents the potentiality of various coating polymers such as chitosan and polylysine for improving the stability of this microencapsulation.
Keywords
Live probiotic bacteria; microencapsulation; alginate; chitosan; polylysine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Cui, J. H., Q. R. Cao, and B. J. Lee. 2007. Enhanced delivery of bifidobacteria and fecal changes after multiple oral administrations of bifidobacteria-loaded alginate poly-L-lysine microparticles in human volunteers. Drug Deliv. 14: 265-271.   DOI   ScienceOn
2 Gilliland, S. E. 1990. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 7: 175-188.   DOI   ScienceOn
3 Jenkins, B., S. Holsten, S. Bengmark, and R. Martindale. 2005. Probiotics: A practical review of their role in specific clinical scenarios. Nutr. Clin. Pract. 20: 262-270.   DOI   ScienceOn
4 King, G. A., A. J. Daugulis, P. Faulkner, and M. F. A. Goosen. 1987. Alginate-polylysine microcapsules of controlled membrane molecular-weight cutoff for mammalian-cell culture engineering. Biotechnol. Prog. 3: 231-240.   DOI   ScienceOn
5 Ma, X. J., I. Vacek, and A. Sun. 1994. Generation of alginatepoly- L-lysine-alginate (Apa) biomicroscopies - the relationship between the membrane strength and the reaction conditions. Artif. Cells Blood Substit. Immobil. Biotechnol. 22: 43-69.   DOI
6 Thomas, S. 2000. Alginate dressings in surgery and wound management - Part 1. J. Wound Care 9: 56-60.   DOI
7 Chen, H., W. Ouyang, M. Jones, T. Haque, B. Lawuyi, and S. Prakash. 2005. In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells. J. Microencapsul. 22: 539-547.   DOI   ScienceOn
8 Prakash, S. and T. M. S. Chang. 1996. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med. 2: 883-887.   DOI   ScienceOn
9 Sun, W. R. and M. W. Griffiths. 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61: 17-25.   DOI   ScienceOn
10 Wang, T., I. Lacik, M. Brissova, A. V. Anilkumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A. C. Powers. 1997. An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol. 15: 358-362.   DOI   ScienceOn
11 Urbanska, A. M., J. Bhathena, and S. Prakash. 2007. Live encapsulated Lactobacillus acidophilus cells in yogurt for therapeutic oral delivery: Preparation and in vitro analysis of alginate-chitosan microcapsules. Can. J. Physiol. Pharmacol. 85: 884-893.   DOI   ScienceOn
12 Urbanska, A. M., J. Bhathena, C. Martoni, and S. Prakash. 2009. Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc (Min/+) mice. Dig. Dis. Sci. 54: 264- 273.   DOI   ScienceOn
13 Weinbreck, F., I. Bodnar, and M. L. Marco. 2010. Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int. J. Food Microbiol. 136: 364-367.   DOI   ScienceOn
14 Xie, Z. P., Y. Huang, Y. L. Chen, and Y. Jia. 2001. A new gel casting of ceramics by reaction of sodium alginate and calcium iodate at increased temperatures. J. Mater. Sci. Lett. 20: 1255- 1257.   DOI   ScienceOn
15 Singh, J., A. Rivenson, M. Tomita, S. Shimamura, N. Ishibashi, and B. S. Reddy. 1997. Bifidobacterium longum, a lactic acidproducing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18: 833-841.   DOI   ScienceOn
16 Yasui, H., K. Shida, T. Matsuzaki, and T. Yokokura. 1999. Immunomodulatory function of lactic acid bacteria. Antonie Van Leeuwenhoek 76: 383-389.   DOI   ScienceOn
17 Shu, Q., F. Qu, and H. S. Gill. 2001. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastroenterol. Nutr. 33: 171-177.   DOI   ScienceOn
18 Simenhoff, M. L., S. R. Dunn, and G. P. Zollner. 1996. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner. Electrolyte Metab. 22: 92-96.
19 Siuta-Cruce, P. and J. Goulet. 2001. Improving probiotic survival rates. Food Technol. 55: 36-42.
20 Steidler, L., W. Hans, and L. Schotte. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355.   DOI   ScienceOn
21 Susanna, R. and R. Pirjo. 2010. Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 231: 1-12.   DOI   ScienceOn
22 Sultana, K., G. Godward, N. Reynolds, R. Arumugaswamy, P. Peris, and K. Kailasapathy. 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food. Microbiol. 62: 47-55.   DOI   ScienceOn
23 Sun, A. M., G. M. O'Shea, and M. F. Goosen. 1984. Injectable microencapsulated islet cells as a bioartificial pancreas. Appl. Biochem. Biotechnol. 10: 87-99.   DOI   ScienceOn
24 Sun, A. M., M. F. Goosen, and G. O'Shea. 1987. Microencapsulated cells as hormone delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 4: 1-12.
25 Tamine, A. Y., V. M. Marshall, and R. K. Robinson. 1995. Microbiological and technological aspects of milks fermented by bifidobacteria. J. Dairy Res. 62: 151-187.   DOI   ScienceOn
26 Norton, S., C. Lacroix, and J. C. Vuillemard. 1993. Effect of pH on the morphology of Lactobacillus helveticus in free-cell batch and immobilized-cell continuous fermentation. Food Biotechnol. 7: 235-251.   DOI   ScienceOn
27 Ouyang, W., H. Chen, M. L. Jones, T. Metz, T. Haque, C. Martoni, and S. Prakash. 2004. Artificial cell microcapsule for oral delivery of live bacterial cells for therapy: Design, preparation, and in-vitro characterization. J. Pharm. Pharm. Sci. 7: 315-324.
28 Perdigon, G., E. Vintini, S. Alvarez, M. Medina, and M. Medici. 1999. Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. J. Dairy Sci. 82: 1108-1114.   DOI   ScienceOn
29 Park, J. K. and H. N. Chang. 2000. Microencapsulation of microbial cells. Biotechnol. Adv. 18: 303-319.   DOI   ScienceOn
30 Peran, L., D. Camuesco, M. Comalada, A. Nieto, A. Concha, M. P. Diaz-Ropero, et al. 2005. Preventative effects of a probiotic, Lactobacillus salivarius ssp. salivarius, in the TNBS model of rat colitis. World J. Gastroenterol. 11: 5185-5192.
31 Quong, D., J. N. Yeo, and R. J. Neufeld. 1999. Stability of chitosan and poly-L-lysine membranes coating DNA-alginate beads when exposed to hydrolytic enzymes. J. Microencapsul. 16: 73-82.   DOI   ScienceOn
32 Rao, C. H. S., R. S. Prakasham, A. B. Rao, and J. S. Yadav. 2008. Functionalized alginate as immobilization matrix in enantioselective L (+) lactic acid production by Lactobacillus delbrucekii. Appl. Biochem. Biotechnol. 149: 219-228.   DOI   ScienceOn
33 Rihova, B. 2000. Immunocompatibility and biocompatibility of cell delivery systems. Adv. Drug Deliv. Rev. 42: 65-80.   DOI   ScienceOn
34 Shu, Q., H. Lin, K. J. Rutherfurd, S. G. Fenwick, J. Prasad, P. K. Gopal, and H. S. Gill. 2000. Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice. Microbiol. Immunol. 44: 213-222.   DOI
35 Lee, J. S., D. S. Cha, and H. J. Park. 2004. Survival of freezedried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52: 7300-7305.   DOI   ScienceOn
36 Lian, W. C., H. C. Hsiao, and C. C. Chou. 2003. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int. J. Food Microbiol. 86: 293-301.   DOI   ScienceOn
37 Lim, F. and A. M. Sun. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210: 908-910.   DOI
38 Liu, P. and T. R. Krishnan. 1999. Alginate-pectin-poly-L-lysine particulate as a potential controlled release formulation. J. Pharm. Pharmacol. 51: 141-149.   DOI   ScienceOn
39 Marteau, P. and J. C. Rambaud. 1993. Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207-220.
40 Maeda, N., R. Nakamura, Y. Hirose, S. Murosaki, Y. Yamamoto, T. Kase, and Y. Yoshikai. 2009. Oral administration of heatkilled Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. Int. Immunopharmacol. 9: 1122-1125.   DOI   ScienceOn
41 Martoni, C., J. Bhathena, M. L. Jones, A. M. Urbanska, H. Chen, and S. Prakash. 2007. Investigation of microencapsulated BSH active Lactobacillus in the simulated human GI tract. J. Biomed. Biotechnol. 2007: 13684.
42 McIntosh, G. H., P. J. Royle, and M. J. Playne. 1999. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr. Cancer 35: 153-159.   DOI   ScienceOn
43 Molin, G. 2001. Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am. J. Clin. Nutr. 73: 380S-385S.   DOI
44 Narayani, R. and K. P. Rao. 1996. Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. Int. J. Pharm. 143: 255-258.   DOI   ScienceOn
45 Iyer, C., M. Phillips, and K. Kailasapathy. 2005. Release studies of Lactobacillus casei strain Shirota from chitosan-coated alginate-starch microcapsules in ex vivo porcine gastrointestinal contents. Lett. Appl. Microbiol. 41: 493-497.   DOI   ScienceOn
46 Joki, T., M. Machluf, A. Atala, J. Zhu, N. T. Seyfried, I. F. Dunn, T. Abe, R. S. Carroll, and P. M. Black. 2001. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat. Biotechnol. 19: 35-39.   DOI   ScienceOn
47 Kitajima, H., Y. Sumida, R. Tanaka, N. Yuki, H. Takayama, and M. Fujimura. 1997. Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch. Dis. Child Fetal Neonatal Ed. 76: F101-F107.   DOI
48 Junzhang, L., Y. Weiting, L. Xiudong, X. Hongguo, W. Wei, and M. Xiaojun. 2008. In vitro and in vivo characterization of alginate-chitosan-alginate artificial microcapsules for therapeutic oral delivery of live bacterial cells. J. Biosci. Bioeng. 105: 660- 665.   DOI   ScienceOn
49 King, A., S. Sandler, and A. Andersson. 2001. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J. Biomed. Mater. Res. 57: 374-383.   DOI   ScienceOn
50 Kitabatake, N. and Y. I. Kinekawa. 1998. Digestibility of bovine milk whey protein and $\beta$-lactoglobulin in vitro and in vivo. J. Agric. Food Chem. 46: 4917-4923.   DOI   ScienceOn
51 Lanza, R. P., W. M. Kuhtreiber, D. Ecker, J. E. Staruk, and W. L. Chick. 1995. Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation 59: 1377-1384.   DOI   ScienceOn
52 Lee, D. W., S. J. Hwang, J. B. Park, and H. J. Park. 2003. Preparation and release characteristics of polymer-coated and blended alginate microspheres. J. Microencapsul. 20: 179-192.   DOI
53 Dabour, N., A. Zihler, E. Kheadr, C. Lacroix, and I. Fliss. 2009. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 133: 225-233   DOI   ScienceOn
54 Deguchi, Y., T. Morishita, and M. Mutai. 1985. Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric. Biol. Chem. 49: 13-19.   DOI
55 Gaserod, O., A. Sannes, and G. Skjak-BraeK. 1999. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials 20: 773-783.   DOI   ScienceOn
56 Diaz-Ropero, M. P., R. Martín, S. Sierra, F. Lara-Villoslada, J. M. Rodríguez, J. Xaus, and M. Olivares. 2007. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 102: 337-343.
57 Ding, W. K. and N. P. Shah. 2009. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74: M100-M107.   DOI   ScienceOn
58 Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378.   DOI
59 Gbassi, G. K., T. Vandamme, S. Ennahar, and E. Marchioni. 2009. Microencapsulation of Lactobacillus plantarum spp. in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129: 103-105   DOI   ScienceOn
60 Gillian, Y. 2008. Symbiosis: The bacteria diet. Nat. Rev. Microbiol. 6: 174-175.
61 Guoqiang, D., R. Kaul, and B. Mattiasson. 1991. Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Appl. Microbiol. Biotechnol. 36: 309-314
62 Hari, P. R., T. Chandy, and C. P. Sharma. 1996. Chitosan/ calcium-alginate beads for oral delivery of insulin. J. Appl. Polym. Sci. 59: 1795-1801.   DOI
63 Huguet, M. L., R. J. Neufeld, and E. Dellacherie. 1996. Calcium-alginate beads coated with polycationic polymers: Comparison of chitosan and DEAE-dextran. Process Biochem. 31: 347-353.   DOI   ScienceOn
64 Cirone, P., J. M. Bourgeois, R. C. Austin, and P. L. Chang. 2002. A novel approach to tumor suppression with microencapsulated recombinant cells. Hum. Gene Ther. 13: 1157-1166.   DOI   ScienceOn
65 Chen, H., W. Ouyang, M. Jones, T. Metz, C. Martoni, T. Haque, R. Cohen, B. Lawuyi, and S. Prakash. 2007. Preparation and characterization of novel polymeric microcapsules for live cell encapsulation and therapy. Cell Biochem. Biophys. 47: 159-168.   DOI
66 Chang, T. M. S. and S. Prakash. 1998. Therapeutic uses of microencapsulated genetically engineered cells. Mol. Med. Today 4: 221-227.   DOI   ScienceOn
67 Chang, T. M. S. and S. Prakash. 2001. Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol. Biotechnol. 17: 249-260.   DOI   ScienceOn
68 Chang, T. M. S. 2005. Therapeutic applications of polymeric artificial cells. Nat. Rev. Drug Discov. 4: 221-235.   DOI   ScienceOn
69 Chou, L. S. and B. Weimer. 1999. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82: 23-31.   DOI   ScienceOn
70 Crittenden, R., R. Weerakkody, L. Sanguansri, and M. Augustin. 2006. Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl. Environ. Microbiol. 72: 2280-2282.   DOI   ScienceOn
71 Cui, J. H., J. S. Goh, P. H. Kim, S. H. Choi, and B. J. Lee. 2000. Survival and stability of bifidobacteria loaded in alginate/ poly-L-lysine microparticles. Int. J. Pharm. 210: 51-59.   DOI   ScienceOn
72 Cui, J. H., Q. R. Cao, Y. J Choi, K. H. Lee, and B. J. Lee. 2006. Effect of additives on the viability of bifidobacteria loaded in alginate poly-L-lysine microparticles during the freezedrying process. Arch. Pharm. Res. 29: 707-711.   과학기술학회마을   DOI   ScienceOn
73 Anderson, J. W. and S. E. Gilliland. 1999. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr. 18: 43-50.   DOI
74 Afkhami, F., W. Ouyang, H. Chen, B. Lawuyi, T. Lim, and S. Prakash. 2007. Impact of orally administered microcapsules on gastrointestinal microbial flora: In-vitro investigation using computer controlled dynamic human gastrointestinal model. Artif. Cells Blood Substit. Immobil. Biotechnol. 35: 359-375.   DOI   ScienceOn
75 Albarghouthi, M., D. A. Fara, M. Saleem, T. El-Thaher, K. Matalka, and A. Badwan. 2000. Immobilization of antibodies on alginate-chitosan beads. Int. J. Pharm. 206: 23-34.   DOI   ScienceOn
76 Akiyama, K. 1994. Effects of oral administration of Bifidobacterium breve on development of intestinal microflora in extremely premature infants. Acta Neonatol. Jpn. 30: 130-137.
77 Arunachalam, K., H. S. Gill, and R. K. Chandra. 2000. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur. J. Clin. Nutr. 54: 263- 267.   DOI   ScienceOn
78 Audet, P., C. Paquin, and C. Lacroix. 1988. Immobilized growing lactic-acid bacteria with k-carrageenan-locust bean gum gel. Appl. Microbiol. Biotechnol. 29: 11-18.   DOI
79 Boyaval, P. and J. Goulet. 1988. Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginateentrapped Lactobacillus helveticus. Enzyme Microb. Tech. 10: 725-728.   DOI   ScienceOn
80 Canh, L. T., M. Mathieu, M. Mateescu, and M. Lacroix. 2004. Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol. Appl. Biochem. 39: 347-354.   DOI   ScienceOn