• Title/Summary/Keyword: bending strength performances

Search Result 53, Processing Time 0.019 seconds

Static Bending Performances of Cross-Laminated Wood Panels Made with Tropical and Temperate Woods

  • Byeon, Jin-Woong;Kim, Tae-Ho;Yang, Jae-Kyung;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • In this study, for using effectively domestic (temperate) small and medium diameter logs as a wooden floorboard, cross-laminated wood panels were manufactured using domestic larch and tulip woods as a base material for teak and merbau wood flooring, and static bending strength performances were measured to investigate the applicability as the base materials of wooden flooring in place of plywood. Static bending MOE was much influenced by the strength performances of the top layer lamina than that of the laminae for base materials. Bending MOR showed the higher values in tulip wood that was hardwoods than in larch wood that was softwoods regardless of the strength performances of the top layer laminae, and it was found that the values were much influenced by the strength performances of the base materials used in the core and bottom layers. However these values were 1.4-2.5 times higher values than the bending strength of the wooden floorboards specified in KS, it was found that it can be sufficiently applied to the base materials of wooden floorboards in place of plywood.

Measurement of Dynamic MOE of 3-Ply Laminated Woods by Flexural Vibration and Comparison with Blending Strength and Creep Performances

  • Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.46-57
    • /
    • 2006
  • To estimate nondestructively strength performances of laminated woods, 3-ply parallel- and cross-laminated wood specimens exposed under atmosphere conditions after bending creep test were prepared for this study. The effects of density of species, arrangement of laminae and lamination types on dynamic MOE obtained by flexural vibration were investigated, and regression analyses were conducted in order to estimate static bending strength and bending creep performances. Dynamic MOE of parallel-laminated woods showed 1.0~1.2 times higher values than static bending MOE, and those of cross-laminated woods showed 1.0~1.4 times higher values than static bending MOE. The degree of anisotropy of dynamic MOE perpendicular to the grain of face laminae versus that parallel to the grain of face laminae was markedly decreased by cross-laminating. There were strong correlations between dynamic MOE by flexural vibration and static bending MOE (correlation coefficient r = 0.919~0.972) or bending MOR (correlation coefficient r = 0.811~0.947) of 3-ply laminated woods, and the correlation coefficient were higher in parallel-laminated woods than in cross-laminated woods. It indicated that static bending strength performances were able to be estimated from dynamic MOE by flexural vibration. Also, close correlations between the reciprocal of dynamic MOE by flexural vibration and initial compliance at 0.008 h of 3-ply laminated woods were found (correlation coefficient r = 0.873~0.991). However, the correlation coefficient between the reciprocal of dynamic MOE and creep compliance at 168 h of 3-ply laminated woods was considerably lower than those between dynamic MOE and initial compliance, and it was hard to estimate creep compliance with a high accuracy from dynamic MOE due to the variation of creep deformation.

Bending Performances of Radiata Pine Veneers and Phenol Resin-Impregnated Sheet Overlaid Plywoods by Nondestructive Evaluation (비파괴평가에 의한 라디에타소나무 단판 및 수지함침시트 표면적층 합판의 휨성능)

  • Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 1998
  • The bending performances were evaluated at the radiata pine plywood through veneer compositions encompassing veneer quality, ply-numbers and overlays of the high density- or medium density-phenol resin impregnated sheets (hereafter abbreviated as resin sheets) on the raw plywood. In addition, a prediction on the bending MOE of veneers and plywoods was carried out by the nondestructive testing with stresswave timer. The summarized results were as follows: I. Bending strength and bending MOE of resin sheets-overlaid plywoods in parallel surface grain direction through 5 and 7ply were increased by 13 to 45% and 17 to 34%, respectively. Resin sheets-overlay occurred an increasing effect of the strength efficiency i.e. strength perpendicular-to-grain direction versus that parallel-to-grain direction, showing the phenomenon that the plywood strength becomes greater at the perpendicular-to-grain direction of 7ply than at that of 5ply. Displacement at bending failure had a greater trend at 7ply than at 5ply, and was decreased by resin sheets-overlay. 2. After the nondestructive bending MOEs were measured for individual veneers, these veneers were rearranged in plywood-manufacture. In these plywoods, including resin sheets-overlay, the actual MOE was predictable with feasibility of $R^2$=0.53, and also the nondestructively-evaluated MOE was lower by 20% in raw plywood, and higher 20% in LVL than actual bending MOEs.

  • PDF

Nondestructive Evaluation of Bending Strength Performances for Red Pine Containing Knots Using Flexural Vibration Techniques

  • Byeon, Hee-Seop;Ahn, Sang-Yeol;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.13-20
    • /
    • 2005
  • This paper deals with flexural vibration techniques as a means of predicting bending strength properties for quarter-sawn and flat-sawn planes of red pine containing knots. Dynamic modulus of elasticity $(MOE_d)$ was calculated from resonance frequency obtained from the flexural vibration induced by a magnetic driver in quarter-sawn and flat-sawn planes of red pine containing knots. The dynamic MOE were well correlated to bending strength properties. Their correlation coefficients ranged from 0.866 to 0.800 for the regression between dynamic MOE and static bending MOE or MOR. The difference of the values between quarter-sawn and flat-sawn was very small. These values were higher than correlation between percentage of total knot diameter to total width of red pine specimen $(K_T(%))$ as well as $K_O(%)$ base upon ASTM D 3737 and static bending strength properties (correlation coefficient r = 0.448~0.704), and were similar to those between static bending MOE and bending MOR (r = 0.850). These results indicate that dynamic MOE obtained from resonance frequency induced by flexural vibration of magnetic driver is able to effectively use for predicting of static bending strength of red pine containing knots as well as static MOE.

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.

Improvement of Bending Performances by Sloped Finger-Joint Method in Pinus densiflora S. et Z. (I) (경사핑거접합법에 의한 소나무재의 휨강도성능개량 (I))

  • Byeon, Hee-Seop;Park, Han-Min;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 1997
  • The bending performances of sloped finger-joints in Pinus densiflora S. et Z. were tested in order to improve the strength properties of finger-joint Sloped finger-cut pieces were jointed with four kinds of adhesives(resorcinol-phenol, oilic urethane, polyvinyl acetate, and polyvinyl-acryl acetate resin). The slope ratios of finger joints were 0, 0.5, 1.0, 2.0. The MOE, MOR and defletion to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were: 1. The efficiencies of MOE to finger and sloped finger-joints were 82% or greater in every kind of adhesives except polyvinyl-acryl acetate resin adhesive and there were some effect of slope on the MOE in a sloped finger-joint for polyvinyl-acryl acetate and oilic urethane resin adhesives. 2. The effects of slope on the MOR to sloped finger-joints were showed in every kind of adhesive, because the efficiencies of MOR increased with increasing slope ratio in sloped finger-joints. The efficiencies of MOR to slope ratios of 0 and 2.0 ranged 43~65% and 76~82%, respectively. There was almost no effect of the kinds of adhesives on the MOR to the slope ratio of 2.0. 3. It was found impossible to estimate the bending strength of sloped finger-jointed Pinus densiflora S. et Z. by using MOE. The correlation coefficient(0.124) between MOE and MOR was very low and not significant at 5% level.

  • PDF

A Study on The Strength Properties of Board Using The Carbonized Rice Husks to Develop a Structural Insulation (구조용 단열재 개발을 위한 왕겨숯 보드의 강도적 성질에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.511-518
    • /
    • 2017
  • In recent years, many interests and researches on the insulations required the multiple performances other than insulation performance. The purpose of this paper is to find the optimal ratio between wood fiber and rice-husks charcoal to develop a structural board with carbonized rice-husks. Based on these rice-husks charcoals, basic research was carried out to develop thermal insulation materials with structural performance, and the following conclusions were obtained. The MC of the board using the carbonized rice-husks was 3.2-4.1% and the density was 0.58-0.68, indicating the possibility of excellent structural material. The bending strength was 9.1-32.6 MPa in the length direction and 9.2-34.1 MPa in the width direction. It is possible to obtain the bending strength of the normally used MDF level and to find the possibility of development of the thermal insulation material having the structural performances.

The Bending Performances of Sloped Finger-Jointed Rhus verniciflua (옻나무 경사핑거접합재의 휨강도성능)

  • 변희섭;이원희;홍병화
    • Journal of the Korea Furniture Society
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • The bending performance of sloped finger-jointed Rhus verniciflua were tested in order to improve the strength properties of finger-joint. Sloped finger-cut pieces were jointed with three kinds of adhesives (polyvinyl acetate, polyvinyl-acryl acetate and oilic resin). The slope ratios of finger joints were 0, 1.0, 1.5, and 2.0. The MOE, MOR and deflection to maximum load in bending of sloped finger-joints and solid wood specimen were measured. The results were : 1) The efficiencies of MOE to finger and sloped finger-joints to the solid wood were almost same in the three kinds of adhesives(polyvinyl acetate, polyvinyl-acryl acetate and oilic urethane resin) and there were some effect of slope on the MOE in a sloped finger-joint for three kinds of resin adhesives. 2) There was the effect of slope on the MOR in sloped finger-joints in every kind of adhesive. The efficiencies of MOR in slope ratios of 0 and 2.0 ranged 65-79%, respectively. There was also a slight effect of the kinds of adhesives on the MOR. However, the efficiencies of deflection to the urethane resin adhesive were much less than those of polyvinyl acetate, polyvinyl-acryl acetate resin adhesives except the slope ratio of 0. 3) It might be impossible to estimate the bending stregth of sloped finger-jointed Rhus verniciflua by using MOE. The correlation coefficient(0.192) between MOE was very low and not significant at 5% level.

  • PDF

Effect of Annual Ring Angles on Static Bending Strength Performances of Cross-Laminated Woods Made with Spruce (연륜경사각이 가문비나무 직교형적층재의 정적 휨 강도성능에 미치는 영향)

  • Sung, Eun-Jong;Kwon, Chang-Bae;Ryu, Hyun-Soo;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.290-300
    • /
    • 2014
  • In this study, cross-laminated woods were made with spruce wood and the effects of annual ring angles of perpendicular direction laminae on static bending strength performance were investigated. Static bending strength performances of parallel laminated woods with all layers composed of laminae perpendicular to the grain ($P_{\bot}$ type) were in the order of $90^{\circ}$ > $0^{\circ}$ > $45^{\circ}$. The MOE and MOR for the $45^{\circ}$ annual ring angle were 0.0989 GPa and 3.25 MPa, and it showed the lowest values. By placing longitudinal-direction laminae in the core of $P_{\bot}$ type, the strength performances were markedly improved. In the case of cross-laminated woods with perpendicular-direction laminae in the faces ($C_{\bot}$ type), the bending strength performances were in the order of $90^{\circ}$ > $0^{\circ}$ > $45^{\circ}$, but the differences among annual ring angles were less than those of the parallel-laminated woods. In the case of cross-laminated woods with perpendicular-direction laminae in the core ($C_{\parallel}$ type), the bending strength performances were in the order of $45^{\circ}$ > $90^{\circ}$ > $0^{\circ}$ unlike $P_{\bot}$ type and $C_{\bot}$ type. The MOE and MOR for the $45^{\circ}$ annual ring angle were 12.0 GPa and 55.8 MPa, and it showed the highest values.