• Title/Summary/Keyword: bending radius

Search Result 291, Processing Time 0.024 seconds

Springback for the Warm 2D Draw-bending of Steel Sheets (박판의 온간 2차원 드로오 벤딩에서의 스프링백)

  • Lee S. M.;Chang S. H.;Choi Y. C.;Heo Y. M.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.75-80
    • /
    • 2001
  • The purpose of this study is to investigate the characteristics of springback for various process conditions of the 2D draw-bending operation. The process variables are the forming temperature, the geometry of tools such as punch profile radius(Rp) and die profile radius(Rd). Especially, in order to control the springback, the use of the warm forming method is applied. For the warm draw-bending, five steps of temperature ranges, from room temperature to $200^{\circ}C$, were adopted. And two kinds of steel sheets, namely SCP1 and TRIP(transformation-induced plasticity), the newly developed high strength Steel, were adopted. As a result, the springback was affected by the elevated temperature and the geometry of tools in two kinds of steel sheets.

  • PDF

Bending Buckling Analysis of Circular Cylindrical Shell based on LOVE Type Solution (LOVE이론에 근거한 원통형쉘의 휨좌굴해석)

  • 김성도;하지명;이시형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.53-60
    • /
    • 1999
  • The bending buckling behavior of circular cylindrical shell is studied. The classical analysis by Love type solution and the package program LUSAS for the structural analysis are used to estimate the critical stresses of circular cylindrical shells under axial compression and bending loads. In this paper, the Love type of buckling equation is carefully investigated and numerical results are presented for a wide range of radius-to-thickness (R/t) ratios and length-to-radius (L/R) ratios. These results show that the maximum critical bending stress is about 30~80% greater than the critical compressive stress

  • PDF

A Study on Shape Fixability of Press Formed Parts (판재 프레스 성형 제품의 형상동결성 연구)

  • 한수식;박기철;남재복
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • This paper deals with the shape fixability of press formed parts through the use of a V-bending process and a U-bending one. The influence of material properties on the shape fixability in forming processes was investigated. A V-bending process had on optimum ben radius for each combination of parameters which caused maximum shape fixability. In the U-bending process the blank holder force could control the degree of shape fixability. A ha호 blank holding force resulted in a uniform strain distribution and increased shape fixability.

  • PDF

Bending Characteristics of Ag Micro Circuits using Electrohydrodynamics Printing Technology (전기수력학적 프린팅 기술을 이용한 Ag 미세회로의 굽힘 특성)

  • Lee, Yong-Chan;Ahn, Ju-Hun;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2019
  • The objective of this study was to study the bending characteristics of Ag nano ink using EHD (Electrohydrodynamics) inkjet printing technology for flexibility and miniaturization of devices. The optimal conditions for the technology were derived, and bending characteristics of the Ag nano circuit obtained. For the EHD printing, it is essential to find the optimal point for each parameter such as material characteristics, density, flow rate, voltage, discharge height etc. Therefore, it was derived as the point from the working height and the applied voltage. Also, bending characteristics are confirmed by measuring resistance with each radius of curvature using a fabricated bending module. It was confirmed that rate of resistance change increases rapidly as the radius of curvature increases.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Fracture Behavior of Fiber Reinforced Composites under tensile and Bending Loadings (섬유강화 복합재료의 인장 및 굽힘에 의한 파괴)

  • Nam, Gi-U;Mun, Chang-Gwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.45-52
    • /
    • 1994
  • The study was conducted to evaluate reliability of the longitudinal tensile properties of unidirectional carbon fiber reinforced composites. Two kinds of carbon fiber reinforced composites laminates were tested in order to examine the factors of variability and have the information concerning reliability improvement. Temperature dependence of the strength and its variability were investigated by means of testing at two kinds of temperatures. Statistical distributions of the respective mechanical properties were obtained from the tensile tests. As a result, strength of composites was directly proportional to the ultimate strain and was not proportional to the elastic modulus. The fracture behavior in bending of notched plate was studied for a composite material. The uniform bending tests of notched plates have been carried out for a wide range of notch radii. The experiment shows that the nominal stress at failure decreased with decreasing notch radius and it approaches a constant value when the notch radius is less than about 0.3mm. The critical maximum stress is governed by notch root radius alone in the case of a constant thickness of specimen.

  • PDF

The Study for Reduction of Stress Concentration at the Stepped Shaft According to Two Types of External Force (하중 종류에 따른 다단축의 응력 집중 완화에 대한 연구)

  • Park, I.S.;Shim, J.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this study, Finite Element Analysis have been adopted to analyze reducing stress effect and used to induce the sensitivity of design parameter on various techniques which was used for reducing stress. And so it can be utilized as a data to design on similar model. The effect of reducing stress with respect to change of relief groove radius can be increased by 27.3~18.2 % more than radius of fillet. And if a shoulder fillet radius is larger, additional reducing stress by relief groove radius is not obtained. And there was only little effect on reducing stress by changing the center point of groove radius along horizontal direction. In the case that undercut radius is 1.5mm, Max. Equivalent stress is reduced by 5.71% under bending force and 11.11% under torsion. The best effect of reducing stress at undercut model was yielded when the undercut radius is a forth of difference of stepped shaft radius.

Light Propagation in Multimode GRIN(graded-index) Fibers with Intrusion Sensing Capability (침입 감지기능을 가진 다중모드 GRIN(graded-index) 광섬유 내에서의 광파의 전파)

  • Sohn, Young-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.273-278
    • /
    • 2002
  • An intrusion-sensitive capability of multimode graded-index (GRIN) optical fibers under bending has been investigated. In this system, the data light is transmitted in the fundamental mode while alarm monitor light is launched in a high-order mode at the same time. An attempted intrusion to drain data by bending the fiber results in greater attenuation of a monitor signal in higher order modes, thereby setting off an alarm at the receiver. Light propagation in a multimode graded-index fiber is also analyzed theoretically when the fundamental mode is selectively excited and the fiber is bent around a constant radius mandrel. The bending generates coupling between the various modes of the fiber. Power transitions of the fundamental mode by changing the bending radius were also analyzed numerically using program simulation. It is shown that Asawa-Taylor model[4] is valid up to 1cm of the radius of curvature of the fiber bend.