• 제목/요약/키워드: bending factor

검색결과 612건 처리시간 0.035초

열충격하에 있는 균열체의 파괴시간 (Fracture time of cracked body under thermal shock)

  • 이강용;박정수
    • 오토저널
    • /
    • 제14권6호
    • /
    • pp.91-98
    • /
    • 1992
  • In the research on the fracture time of soda lime silicate glass under thermal shock, it is shown that the theoretical and experimental fracture times are in good agreement, the suggested method to measure critical stress intensity factor for small three-point bending specimen is useful and the edge temperature before thermal shock on cracked side vs. crack length and fracture time are inversely proportional.

  • PDF

코디어라이트-SiC위스커 복합재료에서 측정방법에 따른 파괴인성치의 변화 (Influence of Testing Method on the Fracture Toughness of Cordierite-SiC Whisker Ceramic Composites)

  • 강대갑
    • 한국세라믹학회지
    • /
    • 제24권4호
    • /
    • pp.313-320
    • /
    • 1987
  • Fracture toughness of hot pressed cordierite-SiC whisker ceramic composites contained up to 40vol.% SiC whiskers were determined by using the indentation crack length(IC), indentation strengthin-bending(IS), and single-edge notched-beam(SENB) methods. The results were compared to stress intensity factor, KB, at the crack branching boundary measured by using the mirror zone radius (MZ) method. IS method seems to provide a more reasonable estimation of fracture toughness than other methods for these composites.

  • PDF

변형률 측정을 이용한 추진기관용 Al 합금의 파괴인성 평가 (Evaluation of Fracture Toughness of Al alloys for Propulsive Engine using Strain Measurement)

  • 김재훈;김덕회;임동규;박성욱;문순일
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.13-21
    • /
    • 2002
  • The tincture toughness is evaluated by using U(compact tension) and 3PB(three point bending) specimens of AI alloys far propulsive engine. To evaluate the static fracture toughness, strain gage method is used. The static fracture toughness obtained from the strain measurement is compared with the results by ASTM standard and FEM analysis. For the reliable evaluation of fracture toughness, strain gages are attached at various positions.

후판 AA5083합금 용접부의 변형 거동 (A Behavior of Welding Distortion at the Thick Weldment of AA5083)

  • 신상범;이동주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.234-236
    • /
    • 2004
  • The purpose of this study is to establish the predictive equation of welding distortion at the thick AA5083 alloy weldment. In order to do it, the extensive FE analysis was peformed to identify the principal factor controlling welding distortion. Based on the results, the predictive equations of transverse shrinkage and angular distortion at the thick AA5083 alloy weldment were formulated as the function of heat intensity (Q), in-plane(Di) and bending(Db) rigidity.

  • PDF

디스크 정렬불량에 기인한 브레이크 스퀼소음의 실험해석 (Experimental Analysis on Brake Squeal Noise Due to Disk Misalignment)

  • 박주표;최연선
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.118-124
    • /
    • 2004
  • To investigate the mechanics of brake squeal noise, the sound and vibration of an actual brake system was measured using a brake dynamometer. The experimental results show that disk run-out due to the misalignment of brake disk varies with brake line pressure and becomes the important factor of brake squeal noise generation. Also, it was confirmed that the frequency of the squeal noise equals to the natural frequency of the disk bending mode.

Effective Length of Reinforced Concrete Columns in Braced Frames

  • Tikka, Timo K.;Mirza, S. Ali
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권2호
    • /
    • pp.99-116
    • /
    • 2014
  • The American Concrete Institute (ACI) 318-11 permits the use of the moment magnifier method for computing the design ultimate strength of slender reinforced concrete columns that are part of braced frames. This computed strength is influenced by the column effective length factor K, the equivalent uniform bending moment diagram factor $C_m$ and the effective flexural stiffness EI among other factors. For this study, 2,960 simple braced frames subjected to short-term loads were simulated to investigate the effect of using different methods of calculating the effective length factor K when computing the strength of columns in these frames. The theoretically computed column ultimate strengths were compared to the ultimate strengths of the same columns computed from the ACI moment magnifier method using different combinations of equations for K and EI. This study shows that for computing the column ultimate strength, the current practice of using the Jackson-Moreland Alignment Chart is the most accurate method for determining the effective length factor. The study also shows that for computing the column ultimate strength, the accuracy of the moment magnifier method can be further improved by replacing the current ACI equation for EI with a nonlinear equation for EI that includes variables affecting the column stiffness and proposed in an earlier investigation.

7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동 (Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions)

  • 신용승
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

국부변형률방법을 이용한 노치를 지닌 축의 피로수명평가 (Fatigue Life Evaluation of Notched Shaft Using Local Strain Approach)

  • 고승기;김영일;이학주;김완두;이상록
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.80-89
    • /
    • 1996
  • Fatigue life of a notched shaft was evaluated in order to estimate the durability and integrity of the notched shaft in design stage. Cumulative fatigue dama- ge analysis was performed using local strain approach based on the assumption that the fatigue life of a notched component is approximately same as that of a smooth specimen is subjected to the same strain at the notched component. In this paper, shafts with different notch root radius of 1, 2㎜ resulting in different values of stress concentration factors were tested under||rotating bending fatigue loading condition. Theoretical stress concentration factor for each notch type was calculated using finite element method. Fatigue life prediction program, FALIPS, written in C language was developed using the strain-life curve, and the local strain approach integrating Neuber's rule, cyclic stress-strain, and hysteresis loop equations. The fatigue life evaluated using the fatigue notch factor obtained from the experimentally determined fatigue strength showed very large scattering with nonconservatism, but the fatigue notch factors derived from the stress concentration factors and Peterson's equation reduced the considerablely accurate fatigue life evaluation within a factor of three.

  • PDF

항공재료 리벳홀에 인접한 원공결함의 위치에 따른 응력집중계수의 변화와 균열발생거동 (The Variation of Stress Concentration Factor and Crack Initiation Behavior on the Hole Defects Around the Rivet Hole in a Aircraft Materials)

  • 송삼홍;김철웅;김태수;황진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.381-388
    • /
    • 2003
  • The material deficiencies in the form of pre-existing defects can initiated cracks and fractures. The stress distribution and fatigue crack initiation life of engineering materials may be associated with the size, the shape and the relative location of defects contained in the component. The objective of this study is to investigate the effect of arbitrarily located hole defect around the rivet hole of a wing section in monolithic aluminum and Al/GFRP laminates under cyclic bending moment during a service load. The stress distribution and the fatigue crack initiation behavior near a rivet hole of on the relationships between stress concentration factor ($K_t$) and relative position of defects were considered. The test results indicated the features of different stress field. Therefore, the stress concentration factor ($K_t$) and the fatigue crack initiation behavior was illustrated different behavior according to each position of hole defect around the rivet hole in monolithic aluminum and Al/GFRP laminates.

  • PDF

내력상태계수 도입을 통한 RC보의 전단강도분석 (Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams)

  • 정제평;김희정;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF