• Title/Summary/Keyword: bending factor

Search Result 611, Processing Time 0.02 seconds

항공기 날개 보의 중량경감용 천공 형상연구

  • Lee, Si-Hun;Gong, Du-Hyeon;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.304-310
    • /
    • 2017
  • In this paper, various webs of I-shaped beam used in aircraft spars are examined. Under the assumption that an aircraft spar is a cantilevered beam with a constant cross-section and is subjected to only bending, four kinds of webs are analyzed for three different sizes. To enable comparison, each hole has the same area and are subjected to the same load by using EDISON 2D Continuum analysis. While circular hole is the most often used, elliptic one is obtained with the minimum von-Mises stress by about 40% decreased. To verify the results gathered by EDISON, comparison was made with ANSYS and analytic predictions obtained with the stress intensity factor K. As comparison shows insignificant discrepancies, it is concluded that a well-designed beam with elliptic holes will be the most efficient spar regarding weight to rigidity ratio in terms of the bending stress.

  • PDF

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

A n-order refined theory for bending and free vibration of functionally graded beams

  • Hadji, Lazreg;Daouadji, T. Hassaine;Tounsi, A.;Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.923-936
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2017
  • In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

A Study on the Behavior of Cut and Cover Tunnel by Numerical Analysis (복개 터널구조물의 역학적 거동 영향인자 분석을 위한 수치해석적 연구)

  • 이규필;이석원;박시현;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.703-710
    • /
    • 2002
  • In the design of cut and cover tunnels, the structural analysis has been used for its simplicity. Contrarily to the geotechnical analysis, this technique could not account for the geological and geometric factors. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, cut slope, distance between cut slope and tunnel lining, berm, coefficient of lateral earth pressure, were investigated and compared by geotechnical numerical analysis. Based on the results, the variations of earth pressure, bending moment, shear stress, axial load, and displacements were evaluated and analyzed for each factor.

  • PDF

Evaluation of Field Calibration Test on Rail for Train Wheel Force Measurement

  • Sim, Hyoung-Bo;Yeo, Inho
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • An accurate measurement of the train-track interaction forces is important for track performance evaluation. In the field calibration test as a wheel load measurement process, the calibration system creates a different boundary condition in comparison with that in the train wheel passage. This study aims to evaluate a reliability of the field calibration test in the process of wheel load measurement. Finite element models were developed to compare the deformed shapes, bending moment and shear force profiles on the rail section. The analysis results revealed that the deformed shapes and their associated bending moment profiles on the rail are significantly different in two numerical simulations of the calibration test and the train wheel load passage. However, the shear stress profile on the rail section of the strain gauge installation in the field was almost identical, which may imply that the current calibration test is sufficiently reliable.

Crack propagation in flexural fatigue of concrete using rheological-dynamical theory

  • Pancic, Aleksandar;Milasinovic, Dragan D.;Goles, Danica
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The concrete fatigue analysis can be performed with the use of fracture mechanics. The fracture mechanics defines the fatigue crack propagation as the relationship of crack growth rate and stress intensity factor. In contrast to metal, the application of fracture mechanics to concrete is more complicated and therefore many authors have introduced empirical expressions using Paris law. The topic of this paper is development of a new prediction of fatigue crack propagation for concrete using rheological-dynamical analogy (RDA) and finite element method (FEM) in the frame of linear elastic fracture mechanics (LEFM). The static and cyclic fatigue three-point bending tests on notched beams are considered. Verification of the proposed approach was performed on the test results taken from the literature. The comparison between the theoretical model and experimental results indicates that the model proposed in this paper is valid to predict the crack propagation in flexural fatigue of concrete.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Ultimate Behavior of Reinforced Concrete Hyperbolic Cooling Tower (R/C 쌍곡 냉각탑의 극한 거동)

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.59-70
    • /
    • 1992
  • Inelastic nonlinear behavior of a hyperbolic cooling tower under wind loading is studied using a finite element program developed on a Cray Y-MP. Convergence studies for the elastic and inelastic analyses are performed using three mesh models. It is shown that the mesh convergence plays an important role in accurately predicting the inelastic behavior of a cooling tower. Even though the cooling tower resists the applied forces through membrane stresses, it is found that the bending stresses play an important role in the failure and behavior of the cooling tower. The present analysis gives a shape factor of 1.48, which indicates a significant redistribution of meridional stresses. It is further evidenced by the distribution of meridional reinforcement yielding which reaches up to $30^{\circ}$ from the windward meridian. The present practice of using elastic analysis for calculating the design stresses appears to be at least safe and conservative. A more comprehensive study should lead to conclusions that would allow use of a higher-than-one shape factor, thus requiring less meridional reinforcement than the present design method does.

  • PDF

A Study on Job Techinique of Aquarium related Prospective Occupation in Korea (우리나라 수족관 관련 유망 직업의 직무기술에 관한 연구)

  • KIM, Sam-Kon;HA, Eun-Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.213-229
    • /
    • 2009
  • The purpose of this study is not only to provide students in the fishery high schools with source materials and opportunity, but also to contribute to a comprehensive development in educational program of the fishery high schools. It investigated various factors of aquarium related 6 new occupations : job contents, educational-level for job performance, training period, worker's capacity, the degree of physical activity, working place, and working environment. First, the work intensity is a normal work. The physical activities such as crawling, bending, accurately seeing a nearby thing and using hands are frequently used. The work is mainly conducted inside a room. The condition for a work environment is very moist and humid. Second, the work intensity is a light work. The physical activities such as using hands, speaking and accurately seeing a nearby thing are frequently used. The work is mainly conducted inside and outside a room. The work environment factor did not have any effect on the work. Third, the work is mainly conducted inside and outside a room. The risk in the condition for a work environment is found out as miscellaneous. Fourth, the physical activities such as bending, touching, and accurately seeing a nearby thing are frequently used. The work is mainly conducted inside a room. The work environment factor did not have any effect on the work. Fifth, the work is mainly conducted inside a room. The condition for a work environment is very moist and humid. Sixth, the work is mainly conducted inside a room. The work environment factor did not have any effect on the work.