• Title/Summary/Keyword: bending deflection

Search Result 576, Processing Time 0.022 seconds

Analysis of Load Transmission Characteristics for Automobile Helical Gear (자동차 헬리컬기어의 하중전달 특성해석)

  • Park, C.I.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Instantaneous Deflection calculation Incorporated with Internal Force State Factor In RC short beams(a/d<2.5) (RC 짧은보(a/d<2.5)의 순간처짐 산정에 대한 연구)

  • Oh, Hyun-Chul;Jeong, Jae-Pyong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.713-718
    • /
    • 2001
  • This paper describes an attempt to develop a new equation to calculate deflection for reinforced concrete deep beams(a/d<2.5). The main idea incorporated with this equation is the internal force state factor($\alpha$)which is able to express global state of internal force flow in cracked reinforced concrete beams subjected to shear and bending. A new equation for deflection calculation using internal force state factor($\alpha$)provides more exact result of deflection in reinforced concrete deep beams than the equation predicted by the current code provisions.

  • PDF

Slope variation effect on large deflection of compliant beam using analytical approach

  • Khavaji, A.;Ganji, D.D.;Roshan, N.;Moheimani, R.;Hatami, M.;Hasanpour, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.405-416
    • /
    • 2012
  • In this study the investigation of large deflections subject in compliant mechanisms is presented using homotopy perturbation method (HPM). The main purpose is to propose a convenient method of solution for the large deflection problem in compliant mechanisms in order to overcome the difficulty and complexity of conventional methods, as well as for the purpose of mathematical modeling and optimization. For simplicity, a cantilever beam of linear elastic material under horizontal, vertical and bending moment end point load is considered. The results show that the applied method is very accurate and capable for cantilever beams and can be used for a large category of practical problems for the aim of optimization. Also the consequence of effective parameters on the large deflection is analyzed and presented.

A Study on the Large Deflection Behavior of Ship Plate with Secondary Buckling (2차좌굴을 포함하는 선체판의 대변형거동에 관한 연구)

  • 고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.565-573
    • /
    • 1999
  • Hihg Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view points this is very preferable since the reduction in the hull weight. however to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross sect6ion of a ship's hull also decreases. This may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonliner analysis of isolated and stiffened plates is required for structural sys-tem analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluated the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Optimal layout of long-gauge sensors for deformation distribution identification

  • Zhang, Qingqing;Xia, Qi;Zhang, Jian;Wu, Zhishen
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.389-403
    • /
    • 2016
  • Structural deflection can be identified from measured strains from long gague sensors, but the sensor layout scheme greatly influences on the accuracy of identified resutls. To determine the optimal sensor layout scheme for accurate deflection identification of the tied arch bridge, the method of optimal layout of long-gauge fiber optic sensors is studied, in which the characteristic curve is first developed by using the bending macro-strain curve under multiple target load conditions, then optimal sensor layout scheme with different number of sensors are determined. A tied arch bridge is studied as an example to verify the effectiveness and robustness of the proposed method for static and dynamic deflection identification.

Methodologies for numerical modelling of prestressed concrete box-girder for long term deflection

  • Lalanthi, M.C.;Kamatchi, P.;Balaji Rao, K.;Saibabu, S.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • In this paper, two methods M1 and M2 to determine long-term deflection through finite element analyses including the effect of creep and relaxation are proposed and demonstrated for a PSC box-girder. In both the methods, the effect of creep is accounted by different models from international standards viz., ACI-209R-92, CEB MC 90-99, B3 and GL2000. In M1, prestress losses due to creep and relaxation and age adjusted effective modulus are estimated through different models and have been used in finite element (FE) analyses for individual time steps. In M2, effects of creep and relaxation are implemented through the features of FE program and the time dependent analyses are carried out in single step. Variations in time-dependent strains, prestress losses, stresses and deflections of the PSC box-girder bridge through M1 and M2 are studied. For the PSC girder camber obtained from both M1 and M2 are lesser than simple bending theory based calculations, this shows that the camber is overestimated by simple bending theory which may lead to non-conservative design. It is also observed that stresses obtained from FEM for bottom fibre are lesser than the stresses obtained from bending theory at transfer for the PSC girder which may lead to non-conservative estimates.

The Development of Design Formulas for Pipe Loops Used in Large Vessels (I) (대형 선박의 파이프 루프 설계식 개발 (I))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.132-137
    • /
    • 2008
  • Ship structures are subject to severe environmental loads causing appreciable hull girder bending which in turn affects the piping system attached to the main hull in the form of a displacement load. While this load may cause failure in the pipes, loops have been widely adopted as a means of preventing this failure, with the idea that they may lower the stress level in a pipe by absorbing some portion of the displacement load. But since such loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of the loops adopted need to be minimized. This research developed design formulas for pipe loops, modeling them as frames composed of beam elements, where not only bending but also shear deflection is taken into account. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper concludes with a sample example showing the efficiency of the proposed formulas.

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Performance of non-prismatic simply supported prestressed concrete beams

  • Raju, P. Markandeya;Rajsekhar, K.;Sandeep, T. Raghuram
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.723-738
    • /
    • 2014
  • Prestressing is the most commonly employed technique in bridges and long span beams in commercial buildings as prestressing results in slender section with higher load carrying capacities. This work is an attempt to study the performance of a minimum weight prestressed concrete beam adopting a non-prismatic section so that there will be a reduction in the volume of concrete which in turn reduces the self-weight of the structure. The effect of adopting a non-prismatic section on parameters like prestressing force, area of prestressing steel, bending stresses, shear stresses and percentage loss of prestress are established theoretically. The analysis of non-prismatic prestressed beams is based on the assumption of pure bending theory. Equations are derived for dead load bending moment, eccentricity, and depth at any required section. Based on these equations an algorithm is developed which does the stress checks for the given section for every 500 mm interval of the span. Limit state method is used for the design of beam and finite difference method is used for finding out the deflection of a non-prismatic beam. All the parameters of nonprismatic prestressed concrete beams are compared with that of the rectangular prestressed concrete members and observed that minimum weight design and economical design are not same. Minimum weight design results in the increase in required area of prestressing steel.

Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory

  • Rahmani, Omid;Deyhim, Soroush;Hosseini, S. Amir Hossein
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.371-388
    • /
    • 2018
  • In this paper, a new model based on nonlocal high order theory is proposed to study the size effect on the bending of nano-sandwich beams with a compliance core. In this model, in contrast to most of the available sandwich theories, no prior assumptions are made with respect to the displacement field in the core. Herein the displacement and the stress fields of the core are obtained through an elasticity solution. Equations of motion and boundary conditions for nano-sandwich beam are derived by using Hamilton's principle and an analytical solution is presented for simply supported nano-sandwich beam. The results are validated with previous studies in the literature. These results can be utilized in the study of nano-sensors and nano-actuators. The effect of nonlocal parameter, Young's modulus of the core and aspect ratio on the deflection of the nano-sandwich beam is investigated. It is concluded that by including the small-scale effects, the deflection of the skins is increased and by increasing the nonlocal parameter, the influence of small-scale effects on the deflections is increased.