• Title/Summary/Keyword: bending capacity

Search Result 614, Processing Time 0.028 seconds

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Flexural Behavior of Layered RC Slabs, which Bio-Mimics the Interface of Shell Layers, Produced by Using 3D Printable Highly Ductile Cement Composite (3D 프린팅용 고연성 시멘트 복합체를 활용한 패류 껍질층 경계면 모방형 적층 RC 슬래브의 휨 거동)

  • Chang-Jin Hyun;Ki-Seong Kwon;Ji-Seok Seo;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2024
  • In this study, we employed Highly Ductile Cement Composite (HDCC) to evaluate the flexural performance of a RC slab that simulates the laminating structure of a seashell. To evaluate flexural performance, we produced conventional RC slab specimens, HDCC slab specimens, and HDCC-M slab specimens which biomimics a seashell's layered structure by inserting PE mesh inside the slab made of HDCC. A series of 4-point bending tests were conducted. Experimental results shows the flexural strength of the HDCC-M slab specimen was 1.7 times and 1.2 times higher than that of the RC and HDCC slab specimens, respectively. Furthermore, the ductility was evaluated using the ratio of yield deflection to maximum deflection, and it was confirmed that the HDCC slab test specimen exhibited the best ductility. This is most likely due to the fact that the inserted PE mesh separates the layers and increases ductility, while the HDCC passing through the mesh prevents the loss of load carrying capacity due to layer separation.

Case Study of Environmental Segmental Retaining Wall(SRW) Using Greenstone Block (환경친화적 블록식 보강토옹벽의 설계 및 시공사례연구)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.19-28
    • /
    • 2004
  • Segmental Retaining Wall(SRW) has been variously applying in Civil and Architecture construction. Recently, the application of environmental element in all type's structures came to essential requirement, and the construction cases of retaining wall using reinforced soil and block are more increased than the past. But, this trend more widely was spread environmental element as landscape work for the backside of reinforced retaining wall as well as block itself. New environmental block, Greenstone Block, developed to apply of this tendency. The retaining wall system using Greenstone can be environmental constructing at both block itself and backside of retaining wall. The material tests, the axial compressive strength test of block and bending test of fiber-pipe, exercised to design and construction of vertical SRW, which were satisfied NCMA standard. Through this procedure, Rewall (ver 1.0) was developed, which can be automation design of SRW including internal stability, external stability and local stability. And these can be considered setback of retaining wall, as well the examples of vertical retaining wall using block presented to satisfying the follows; strength of reinforced geotextile, height of retaining wall, surcharge, types of backfill and groundwater level etc. Many problems investigated on after or before of construction were due to local failure, insufficiency of bearing capacity and groundwater level. Especially, the local failure was many occurred to during compaction or after construction, and the cases of SRW construction is similar to the results of model test on vertical SRW.

Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept (참조응력개념을 이용한 국부감육배관 평가법 개발)

  • Lim, Hwan;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.

Ultimate section capacity of steel thin-walled I-section beam-columns

  • Salem, Adel Helmy;Sayed-Ahmed, Ezzeldin Yazeed;El-Serwi, Ahmed Abdelsalam;Korashy, Mohamed Mostafa
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.367-384
    • /
    • 2004
  • A numerical model based on the finite element technique is adopted to investigate the behavior and strength of thin-walled I-section beam-columns. The model considers both the material and geometric nonlinearities. The model results were first verified against some of the currently available experimental results. A parametric study was then performed using the numerical model and interaction diagrams for the investigated beam-columns have been presented. The effects of the web depth-to-thickness ratio, flange outstand-to-thickness ratio and bending moment-to-normal force ratio on the ultimate strength of thin-walled I-section beam-columns were scrutinized. The interaction equations adopted for beam columns design by the NAS (North American Specifications for the design of cold formed steel structural members) have been critically reviewed. An equation for the buckling coefficient which considers the interaction between local buckling of the flange and the web of a thin-walled I-section beam-column has been proposed.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

Optimal dimensioning for the corner combined footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.169-183
    • /
    • 2017
  • This paper shows optimal dimensioning for the corner combined footings to obtain the most economical contact surface on the soil (optimal area), due to an axial load, moment around of the axis "X" and moment around of the axis "Y" applied to each column. The proposed model considers soil real pressure, i.e., the pressure varies linearly. The classical model is developed by trial and error, i.e., a dimension is proposed, and after, using the equation of the biaxial bending is obtained the stress acting on each vertex of the corner combined footing, which must meet the conditions following: 1) Minimum stress should be equal or greater than zero, because the soil is not withstand tensile. 2) Maximum stress must be equal or less than the allowable capacity that can be capable of withstand the soil. Numerical examples are presented to illustrate the validity of the optimization techniques to obtain the minimum area of corner combined footings under an axial load and moments in two directions applied to each column.

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

Analytical Study on Behaviour of Plane Steel Frame with Semi-Rigid Beam-to-Column Connection (반강접 접합부를 갖는 평면 강골조의 거동에 관한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.483-492
    • /
    • 2009
  • In this study, nonlinear analysis of steel plane frame was performed using the refined plastic hinge method of advanced analysis techniques. In deterioration of stiffness in plastic zone, influences by flexural bending, residual stress, geometrical non-linearity, and semi-rigid connection are considered. And also, further reduced tangent modulus was used for geometrical non-linearity, top and seat angle were chosen for semi-rigid connection. Furthermore, 3 parameter power model was used for moment-rotation behaviour of beam to column connection. The loading conditions are combined with axial and lateral force and the inverse triangle distribution of lateral and eight type of analytical models were used in analysis. The results of analyses were compared with semi-rigid and rigid connection on behaviour of numerical analysis models. And also, the behaviors of frame with changes of semi-rigidity were analyzed by using the results obtained from MIIDAS-GENw.