• Title/Summary/Keyword: bending capacity

Search Result 614, Processing Time 0.028 seconds

Strengthening of deficient steel SHS columns under axial compressive loads using CFRP

  • Shahraki, Mehdi;Sohrabi, Mohammad Reza;Azizyan, Gholamreza;Narmashiri, Kambiz
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.69-79
    • /
    • 2019
  • Numerous problems have always vexed engineers with buckling, corrosion, bending, and over-loading in damaged steel structures. The present study aims to study the possible effects of Carbon Fiber Reinforced Polymer (CFRP) for strengthening deficient Steel Square Hollow Section (SHS) columns. To this end, the effects of axial loading, stiffness values, axial displacement, the shape of deficient on the length of steel SHS columns were evaluated based on a detailed parametric study. Ten specimens were tested to failure under axial compression in laboratory and simulated by using Finite Element (FE) analysis based on numerical approach. The results indicated that the application of CFRP sheets resulted in reducing stress in the damage location and preventing or retarding local deformation around the deficiency location appropriately. In addition, the retrofitting method could increase loading the carrying capacity of specimens.

Experimental Study on Seismic Behavior of Roof Joint

  • Cui, Yao;Gao, Xiaoyu;Liu, Hongtao;Yamada, Satoshi
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1373-1383
    • /
    • 2018
  • Experimental study was conducted to investigate the seismic behavior of roof joint. Eight full-scale specimens were tested considering the effects of axial force, joint height, hole shape of base plate and edge distance of concrete on the failure mode and resistance capacity of roof joint. With the increase of axial force, the hysteretic curves were fuller. The mechanical model of roof joint change from bending to shear. With the increase of joint height, the ultimate strength of roof joint decreased. If the hole shape of base plate changed from circle to loose, the slip behavior of roof joint appeared and the ultimate strength of roof joint decreased. The damage of edge concrete may occur if the edge distance of concrete was not big enough.

Overall hull girder nonlinear strength monitoring based on inclinometer sensor data

  • Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.902-909
    • /
    • 2020
  • It is announced a new procedure for the real-time overall hull response monitoring system depends on inclinometer sensor data. The procedure requires a few inclinometer sensors' data, located on the deck. Sensor data is used to obtain curvature values; and curvature values are used to find out displacements or relevant moment values according to pre-calculated moment-curvature diagrams. Numerical studies are demonstrated with reasonable accuracy for the pre-ultimate and the post-ultimate nonlinear behaviors. Elastic, inelastic, and post-collapse structural bending moment capacity determination of the hull has been presented. The proposed inverse engineering technique will be able to see the response of the hull in real-time with high accuracy to manage the course and speed when cruising or control the loading and the unloading process at the port.

A Study on Applicability of Carbon Ceramic Disc using Pretreated Carbon Fiber (전처리된 탄소섬유를 이용한 카본 세라믹 디스크 적용 가능성에 대한 연구)

  • Yoo, Tae-Doo;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2022
  • In this study, it was verified that carbon-ceramic brake discs can replace existing cast-iron brake discs of the same size. In addition, a method of pretreating carbon fiber to secure heat dissipation characteristics while using a small amount of carbon fiber was established. The thermal conductivity and bending strength characteristics were analyzed according to the carbon content, and brake braking tests were conducted. Through pretreatment, the maximum temperature was lowered by 16 ℃ compared to the case using only carbon fiber, and the cooling rate was improved by approximately 10% compared to metal brake discs. However, the total heat capacity increased as the mass increased owing to the reaction. Thus, the measured temperature was higher than that of the metal brake disc; therefore, additional research is required.

Torsional strength model of reinforced concrete members subjected to combined loads

  • Ju, Hyunjin;Lee, Deuckhang;Zhang, Wei;Wang, Lei
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.285-301
    • /
    • 2022
  • This study aims at developing a torsional strength model based on a nonlinear analysis method presented in the previous studies. To this end, flexural neutral axis depth of a reinforced concrete section and effective thickness of an idealized thin-walled tube were formulated based on reasonable approximations. In addition, various sectional force components, such as shear, flexure, axial compression, and torsional moment, were considered in estimating torsional strength by addressing a simple and linear strain profile. Existing test results were collected from literature for verifications by comparing with those estimated from the proposed model. On this basis, it can be confirmed that the proposed model can evaluate the torsional strength of RC members subjected to combined loads with a good level of accuracy, and it also well captured inter-related mechanisms between shear, bending moment, axial compression, and torsion.

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.

Analysis of the effect of aged concrete layer on RC beams, and a strengthening method employing carbon-fiber-reinforced polymer (CFRP) sheets.

  • Liana Satlykova;Young Sook Roh
    • Architectural research
    • /
    • v.26 no.2
    • /
    • pp.31-39
    • /
    • 2024
  • The numerical study focuses on the analysis of the structural behavior of concrete beams containing outdated concrete and offers an innovative method of strengthening them using carbon-fiber-reinforced polymer sheets (CFRP). The focus is on modeling and analyzing the performance of aged concrete beams strengthened by CFRP in the flexural direction. This study presents an ultimate load model for CFRP-strengthened RC beams featuring outdated concrete layers. Validation through four-point bending tests and finite element modeling demonstrated the efficacy of the model. Findings indicate that CFRP sheets significantly enhance beam strength, particularly in structures with outdated concrete layers, resulting in increased ultimate load capacity. Moreover, an inverse relationship between ultimate load and concrete layer height was observed, with the CFS-21-15-30 sample exhibiting the most substantial reduction. Validation of the model was achieved using finite element analysis con-ducted in Abaqus software.

Mechanical splices of reinforcing bars subjected to bending moments

  • Sadegh Hashemi;Ali Kheyroddin;Ghasem Pachideh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.301-311
    • /
    • 2024
  • Different methods have been proposed in the literature for splicing the reinforcing bars in the construction of concrete structures, which are alternatively used depending on design requirements. The most common approach is the lap splicing which is known as a cost-effective method although, its main disadvantages including congestion of bars at the lap zone and consequently, material wastage has motivated utilization of the other techniques such as mechanical splices (couplers). To better evaluate the performance of the couplers, 6 reinforced concrete (RC) beams whose difference is only the type and location of splices have been experimentally studied in this paper. Based on the results, the mechanical connection of the bars did not markedly affect the load-carrying capacity of the specimens. Moreover, it was observed that after applying the loads and failure of the specimens, none of the bars ruptured at the splice location and all couplers remained undamaged.

Flexural Strengthening of Reinforced Concrete Beams Using Carbon Fiber Mesh (탄소섬유 메쉬를 사용한 철근콘크리트 보의 휨보강)

  • Seo, Soo-Yeon;Yun, Hyun-Do;Choi, Chang-Sik;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.181-190
    • /
    • 2005
  • The objective of this work is to study the flexural strengthening effectiveness of Carbon Fiber Mesh (CFM) in reinforced concrete beams. Flexural strengthening for a simply supported reinforced concrete (RC) beam using CFM is developed by bonding CFM to the soffit of the beam. In this experimental program, five medium-sized reinforced concrete beams strengthened with CFM are tested in bending to evaluate reinforcing effects of the CFM. The beams are designed to have high shear capacity so that expected dominant failure mode of specimens is bending. The reinforcing effect of CFM is small at crack initiation, but is considerable in flexural rigidity of the beam after crack initiation. In comparing the behaviors of strengthened and virgin beams each other, it is shown that the strength of RC beams can be enhanced by attaching CFM. A fairly good agreement between the measured values and the calculated ones is obtained at both the cracking strength and yield strength of the strengthened beams.

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF