• Title/Summary/Keyword: bending and compressive strength properties

Search Result 208, Processing Time 0.028 seconds

The effect of compressive residual stresses of two-stage shot peening for fatigue strength of spring steel (스프링강의 피로강도에 미치는 2단 쇼트 피이닝에 의한 압축잔류응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.71-79
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel(JISG4081-SUP ,SAE 9254, DIN 50CrV4, ) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF

Effects of Filler on Engineering Properties of Permeable Polymer Concrete (충전재가 투수용 폴리머 콘크리트의 공학적 성질에 미치는 영향)

  • Sung, Chan Yong;Jung, Hyun Jung;Min, Jeong Ki
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.51-60
    • /
    • 1996
  • This study was performed to evaluate the effects of filler on engineering properties of permeable polymer concrete with unsaturated polyester resin. The following conclusions were drawn; 1. The unit weight was in the range of $1.804{\sim}1.919t/m^3$, the weights of those concrete were decreased 17~22% than that of the normal cement concrete. 2. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive, 147% by tensile and 188% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2,722~3,060m/sec, which was showed about the same compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher pulse velocity. 4. The water permeability was in the range of $3.076{\sim}4.152{\ell}/cm^2/h$, and it was larglely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 5. The compressive strength, tensile strength, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight. But, it was decreased with the increase of water permeability, respectively.

  • PDF

Experimental and analytical study on improvement of flexural strength of polymer concrete filled GFRP box hybrid members

  • Ali Saribiyik;Ozlem Ozturk;Ferhat Aydin;Yasin Onuralp Ozkilic;Emrah Madenci
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.475-487
    • /
    • 2024
  • The usage of fiber-reinforced polymer materials increases in the construction sector due to their advantages in terms of high mechanical strength, lightness, corrosion resistance, low density and high strength/density ratio, low maintenance and painting needs, and high workability. In this study, it is aimed to improve mechanical properties of GFRP box profiles, produced by pultrusion method, by filling the polymer concrete into them. Within the scope of study, hybrid use of polymer concrete produced with GFRP box profiles was investigated. Hybrid pressure and bending specimens were produced by filling polymer concrete (polyester resin manufactured with natural sand and stone chips) into GFRP box profiles having different cross-sections and dimensions. Behavior of the produced hybrid members was investigated under bending and compression tests. Hollow GFRPxx profiles, polymer-filled hybrid members, and nominative polymeric concrete specimens were tested as well. The behavior of the specimens under pressure and bending tests, and their load bearing capacities, deformations and changes in toughness were observed. According to the test results; It was deduced that hybrid design has many advantages over its component materials as well as superior physical and mechanical properties.

Physical and Mechanical Properties of Korean Red Pine Wood from Different Growth Sites and Correlations between Them (생장지역별 소나무재의 물리적·역학적 특성과 상호 상관관계)

  • Han, Yeonjung;Lee, Hyun-Mi;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.695-704
    • /
    • 2016
  • Physical and mechanical properties of Korean red pine wood grown in Anmyeon-do, Taean-gun, Chungcheongnam-do and Sogwang-ri, Uljin-gun, Gyeongsangbuk-do, Korea were measured and each relationships between them were analyzed. The ring width and latewood proportion along radial axis in Korean red pine at two-regions were measured by collecting the growth core of stands with age class V and IX. The ring width in Korean red pine at two-regions decreased with increasing cambium age. The average ring widths in age class V and IX in Anmyeon-do and Sogwang-ri were 2.865 mm, 1.705 mm, 4.764 mm, and 2.228 mm, respectively. The ring widths in Anmyeon-do were measured from 23% to 40% smaller than Sogwang-ri. The latewood proportion was negatively related with the ring width of Korean red pine at two-regions. The relationship between physical and mechanical properties of specimens for compressive and bending strength tests were analyzed with simple regression analysis. The relationship between latewood proportion and oven-dry density were positive and statistically significant. The relationship between latewood proportion and mechanical properties was slightly positive and not statistically significant, except the specimens for bending strength test of Anmyeon-do. The relationship between oven-dry density and mechanical properties was positive. It was just statistically significant in the specimens of Sogwang-ri. The compressive and bending strengths of Anmyeon-do and Sogwang-ri were 51.3 MPa, 80.5 MPa, 37.7 MPa, and 63.7 MPa, respectively. The strength difference between two-regions was determined to due to difference of ring width and latewood proportion by age class.

An Experimental Study on the Mechanical Properties of Porous Concrete Using Coal Ash and Polymer (석회석 골재를 사용한 강섬유보강 포러스콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Byung-Jae;Park, Seong-Bum;Jang, Young-Il;Jeon, Heum-Jin;Lee, Taek-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.685-688
    • /
    • 2008
  • Concrete is strong on the compressive property, but weak on the tensile and flexural properties. To improve these problems, the reinforcing bar is used in concrete. But porous concrete with steel fiber has a weak point when exposed to air, because porous concrete has the vast continuous void on its inside and steel fiber is easily rusted by air. For these reasons, this study investigated the void ratio, compressive strength, bending strength and bending toughness as steel fiber mixing ratio and target void ratio. From test results, actual void ratio and strength properties increased as the mixing ratio of steel fiber increase. In case the mixing ratio of steel fiber over the fixed ratio, strength is decreased. And from the toughness evaluation, compared to the porous concrete which isn't mixed with steel fiber, the deflection variation efficiency is remarkably improved. Consequently we can confirm the possibility of porous concrete with steel fiber for the secondary product and pavement material to improve strength and bending resistance efficiency.

  • PDF

A Study on the Strength Characteristics of Model Ice for Warm-up Time during Model Ice Preparation (모형빙 생성 시 승온 시간에 따른 모형빙의 강도 특성 연구)

  • Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Understanding the strength characteristics of model ice is an important issue for model testing in an ice model basin to estimate the ship performance in ice. In particular, the mechanical properties of the model ice including elastic modulus, flexural strength and compressive strength are key consideration factors. In order to understand the characteristics of the model ice during warm-up phase at KRISO's ice model basin, the strength properties are tested in this study. The infinite plate-bending method, in-situ cantilever beam test and ex-situ uniaxial compressive test are conducted to determine the strength properties of model ice. The strength characteristics of the model ice are then analyzed in terms of the warm-up phase and seasonality. These results could be valuable to quality control of the model ice characteristics in KRISO's ice model basin and to better understand the variations in strength properties during the ice model tests.

FRACTURE OF HIGH-STRENGTH CONCRETE : Implications for Structural Applications

  • Darwin, David
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.11-30
    • /
    • 2000
  • Structural properties of reinforced concrete, such as bond and shear strength, that depend on the tensile properties of concrete are much lower for high-strength concrete than would be expected based on relationships developed for normal-strength concretes. To determine the reason for this behavior, studies at the University of Kansas have addressed the effects of aggregate type, water-cementitious material ratio, and age on the mechanical and fracture properties of normal and high-strength concretes. The relationships between compressive strength, flexural strength, and fracture properties were studied. At the time of test, concrete ranged in age from 5 to 180 days. Water-cementitious material ratios ranged from 0.24 to 0.50, producing compressive strengths between 20 MPa(2, 920 psi) and 99 MPa(14, 320psi). Mixes contained either basalt or crushed limestone aggregate, with maximum sizes of 12mm(1/2in). or 19mm(3/4in). The tests demonstrate that the higher quality basalt coarse aggregate provides higher strengths in compression than limestone only for the high-strength concrete, but measurably higher strengths in flexure, and significantly higher fracture energies than the limestone coarse aggregate at all water-cementitious material ratios and ages. Compressive strength, water-cementitious material ratio, and age have no apparent relationship with fracture energy, which is principally governed by coarse aggregate properties. The peak bending stress in the fracture test is linearly related to flexural strength. Overall, as concrete strength increases, the amount of energy stored in the material at the peak tensile load increases, but the ability of the material to dissipate energy remains nearly constant. This suggests that, as higher strength cementitious materials are placed in service, the probability of nonductile failures will measurably increase. Both research and educational effort will be needed to develop strategies to limit the probability of brittle failures and inform the design community of the nature of the problems associated with high-strength concrete.

  • PDF

Mechanical properties of pervious concrete with recycled aggregate

  • Zhu, Xiangyi;Chen, Xudong;Shen, Nan;Tian, Huaxuan;Fan, Xiangqian;Lu, Jun
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.623-635
    • /
    • 2018
  • In order to research the influence of different recycled aggregate contents on the mechanical properties of pervious concrete, the experimental study and numerical simulation analysis of the mechanical properties of pervious concrete with five kinds of recycled aggregates contents (0%, 25%, 50%, 75% and 100%) are carried out in this paper. The experimental test were first performed on concrete specimens of different sizes in order to determine the influence of recycled aggregate on the compressive strength and splitting tensile strength, direct tension strength and bending strength. Then, the development of the internal cracks of pervious concrete under different working conditions is studied more intuitively by $PFC^{3D}$. The experimental results show that the concrete compressive strength, tensile strength and bending strength decrease with the increase of the recycled aggregate contents. This trend of reduction is not only related to the brittleness of recycled aggregate concrete, but also to the weak viscosity of recycled aggregate and cement paste. It is found that the fracture surface of pervious concrete with recycled aggregate is smoother than that of natural aggregate pervious concrete by $PFC^{3D}$, which means that the bridging effect is weakened in the stress transfer between the left and right sides of the crack. Through the analysis of the development of the internal cracks, the recycled aggregate concrete generated more cracks than the natural aggregate concrete, which means that the recycled aggregate concrete is easier to form a coalescence fracture surface and eventually break.

An Experimental Study on Mechanical Properties of Ductile Concrete with the Kinds of Aggregate (골재종류에 따른 고인성 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Han Byung-chan;Yang Il-seung;Park Wan-shin;Lim Seung-chan;Morii Naoharu;Youn Hyun-do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.61-64
    • /
    • 2005
  • Concrete is one of the principal materials for the structure and it is widely used all over the world, but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property, Ductile Fiber Reinforced Cementitious Composites (DFRCC) have been developed, and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This paper is to estimate experimentally the mechanical properties of ductile concrete with the kinds of used fine and coarse aggregate for purpose of development of high ductile concrete mixing coarse aggregate. As the results, ductile concrete mixed coarse aggregate showed the displacement-hardening behavior under bending load similar to DFRCC, and its compressive and bending performance varied according to the kinds of used coarse aggregate.

  • PDF