• Title/Summary/Keyword: bender element

Search Result 58, Processing Time 0.024 seconds

AN INTEGRATED FINITE ELEMENT COMPUTER SIMULATOR FOR THE PREDICTION OF ROLL AND STRIP PROFILE IN HOT STRIP ROLLING (열연중 판 및 롤 프로파일 예측 시뮬레이터 개발)

  • 류성룡;김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.301-307
    • /
    • 1999
  • A three dimensional finite element-based computer simulator is presented for the analysis of the thermomechanical behaviors of rolls and strip during hot strip rolling. The simulator is capable of predicting the strip profiles in a 4 high mill stand, and in particular, can account for the effect of bender forces and pair cross angles. The structure of the simulator as well as various numerical schemes employed are described. The capability of the simulator is demonstrated through applications to some selected set of process conditions.

  • PDF

Soil Properties in Relation to Elastic Wave (탄성파를 이용한 흙의 특성연구)

  • 조계춘;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.83-101
    • /
    • 2002
  • Elastic waves provide an important information about the soil mass in the near-surface. Soil properties in relation to elastic wave parameters are clarified to facilitate the application of geophysical technique to soil characterization. As an example, experiments are performed to gain further insight into the behavior of unsaturated particulate materials using bender elements. The small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces such as capillarity, bonding due to ion sharing, buttress effect due to fine migration, and cementation due to salt precipitation. The rate of menisci regeneration is studied after a perturbation as well. Finally, several phenomena associated with the evolution of capillary forces during drying are identified.

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.

Analysis of cementation effects on Small-strain Shear Modulus of Sand (모래의 미소변형 전단탄성계수에 대한 고결영향 분석)

  • Lee, Moon-Joo;Choo, Hyun-Wook;Lee, Jong-Sub;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1431-1437
    • /
    • 2008
  • The small-strain shear modulus ($G_{max}$) of uncemented sand is affected by the the mean principal stress and void ratio, and it has been known that the cementation and aging also affect to $G_{max}$ of sand. For extensive understanding about the effect of cementation on the $G_{max}$ of sand, a series of bender element tests was conducted on the cemented specimens prepared in a large calibration chamber by pluviation of the sand-gypsum mixture. It was observed from the experimental results that the $G_{max}$ of cemented sand is higher above 10 times than value of uncemented one, and it increases exponentially with the gypsum content increases. Whereas, the increase of the vertical stress from 50kPa to 200kPa and the relative density from 40% to 80% result in 20~30% and 2 times increase of $G_{max}$, respectively. It means that the gypsum content, that is cementation level, is the most influential factor on the $G_{max}$ of cemented sand. In addition, the effect of relative density on $G_{max}$ was more apparent on cemented sand than uncemented one.

  • PDF

Evaluation of Characteristics of Shear Strength and Poisso's Ratio through Triaxial and Bender Element Tests (벤더엘리먼트와 삼축시험을 통한 모래의 전단강도 및 포아송비 특성 규명)

  • Yoo, Jin-Kwon;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, isotropically consolidated drained triaxial compression test device installed with bender elements is used to measure stress, stain, and shear wave velocity, from which the characteristics of shear strength and Poisson'ratio are investigated. The results show that there is a unique relationship between maximum shear modulus determined from shear wave velocity and effective vertical stress at failure, which is defined as the sum of vertical and radial stresses at failure. The correlation is very useful since it is possible to predict the shear strength and internal friction angle from shear wave velocity. In addition, Poisson's ratio is determined from measured axial and volumetric strains. It is demonstrated that the range of measured Poisson's ratio is between 0.15 and 0.6, and increases with the axial strain. The ratios at axial strains smaller than 0.2% corresponds to the range recommended in design codes, which are approximately from 0.3~0.35. However, at axial strains exceeding 1%, the measured ratios are between 0.5 and 0.6. It is therefore shown that use of ratios commonly used in practice will result in pronounced underestimation at large strains.

Evaluation of Early-age Properties of Controlled Low Strength Material Using Non-destructive Testing (비파괴 기법을 이용한 유동성 채움재의 초기경화특성 평가)

  • Kim, Dong-Ju;Kim, Sang-Cheol;Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • Controlled Low Strength Material (CLSM) has high fluidity and self-compaction characteristics. CLSM is mainly used for backfilling the excavated road. Early-age properties of CLSM should be characterized for fast restoration of the road. In this study, shear wave monitoring and Vicat needle test are performed to investigate the early-age properties of CLSM depending on the setting time. CLSM consists of CSA cement, fly ash, silt and sand, accelerator, and water. Five fly ashes with different chemical properties are used for CLSM samples. The penetration of CLSM along setting time is obtained through the Vicat needle test. A pair of bender elements are placed in a mold for shear wave measurement, and the change in shear waves with the setting time is monitored. The experimental results show that, regardless of the type of fly ash, the penetration depth decreases and the shear wave velocity increases with the setting time. Depending on the type of fly ash, initial and final times and shear wave velocity change. After testing, the correlation between penetration and shear wave velocity is obtained with high coefficient of determination. The shear wave measurement technique using the bender element can be used to identify early-age properties.

A Pilot Study of Inhole Type CPTu from Model Tests (실내모형실험을 통한 인홀형 탄성파콘 시험의 적용성 분석)

  • Jang, In-Sung;Jung, Min-Jae;Kwon, O-Soon;Mok, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.95-103
    • /
    • 2008
  • Seismic piezocone penetration tests (SCPTu) can be used to obtain dynamic properties of soils as well as cone resistance and penetration pore pressure. However, the SCPTu system can be hardly utilized in marine soils because it is difficult to install the source apparatus which generates the shear wave in offshore site. The authors developed an inhole type piezocone penetration test (CPTu) equipment which both source and receiver composed of bender elements were installed inside the rod located behind the cone. Therefore, it can be applicable to even an offshore site without any additional source apparatus. The objective of this paper is to investigate the practical application of inhole type CPTu by performing laboratory model tests using kaolinite as soft clay. The shear wave velocities of kaolinite soil were measured with time, and the effects of soil disturbance due to the installation of source and receiver were also examined for various distance between source and receiver.

Deformation Measurement of Roadbed in Full-scale Field Test to Determine an Optimum Trackbed of High-Speed Railway (고속철도 노반의 최적단면 결정을 위한 실대형 모형시험에서의 노반 변형 계측)

  • Jung, Young-Hoon;Kim, Hak-Sung;Byeon, Bo-Hyeon;Lee, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2821-2829
    • /
    • 2011
  • Since the KTX was in operation in 2004, a number of researches on increasing the train speed have been conducted. Currently, the Honam High-speed train system is designed for the operation velocity of 350km/h. The societal demand expects higher operation speed, whereas the existing construction method and design specification are questioned in the KTX operation in the velocity over 350 km/h. In this study, a full-scale model test was conducted to obtain the preliminary data that is necessary to understand deformation characteristics of the reinforced road bed and the subgrade layers. In the full-scale model test, direct arrival seismic tests, crosshole seimic test, in-situ bender element test and sensing bar test were employed to measure the stiffness and deformation of the trackbed. The systematic analysis on the different set of measurements enhances the understanding of the behavior of the trackbed.

  • PDF

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

On the compressibility and elastic shear modulus of clay (점토의 압축성을 고려한 전단탄성계수의 정식화 방법에 대하여)

  • 황성춘;오병현;박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.91-97
    • /
    • 2001
  • Case records comprising the results of down-hole seismic surveys collected at nine sites worldwide, together with comparative results of laboratory bender element tests on reconstituted clay samples, were examined in an attempt to quantify the shear modulus of normally consolidated clays at very small strain of the order of 0.001%. The shear modulus G$_{max}$ under the current state of stresses is given in a formula which includes a newly proposed void ratio function. An empirical expression incorporating the new void ratio function is also proposed for practical use in estimating G$_{max}$ profiles with depth in natural soil deposits from routinely available borehole data.ata.

  • PDF