• Title/Summary/Keyword: behavior-based AI

Search Result 117, Processing Time 0.028 seconds

Bayesian Inference driven Behavior-Network Architecture for Intelligent Agent to Avoid Collision with Moving Obstacles (지능형 에이전트의 움직이는 장애물 충돌 회피를 위한 베이지안 추론 주도형 행동 네트워크 구조)

  • 민현정;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1073-1082
    • /
    • 2004
  • This paper presents a technique for an agent to adaptively behave to unforeseen and dynamic circumstances. Since the traditional methods utilized the information about an environment to control intelligent agents, they were robust but could not behave adaptively in a complex and dynamic world. A behavior-based method is suitable for generating adaptive behaviors within environments, but it is necessary to devise a hybrid control architecture that incorporates the capabilities of inference, learning and planning for high-level abstract behaviors. This Paper proposes a 2-level control architecture for generating adaptive behaviors to perceive and avoid dynamic moving obstacles as well as static obstacles. The first level is behavior-network for generating reflexive and autonomous behaviors, and the second level is to infer dynamic situation of agents. Through simulation, it has been confirmed that the agent reaches a goal point while avoiding static and moving obstacles with the proposed method.

A Research on the intention to accept telemedicine of undergraduate students: based on Social Cognitive Theory and Technology Acceptance Model (대학생의 비대면 진료 수용의향에 관한 연구: 사회인지이론과 기술수용모델을 중심으로)

  • Jeon, Ha-Jae;Park, Seo-Hyun;Park, Chae-Rim;Shin, Young-Chae;Park, Se-Yeon;Han Se-mi
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.325-338
    • /
    • 2022
  • This study was conducted to explore the acceptance behavior of undergraduate students toward telemedicine, which is temporarily allowed in the COVID-19. We applied social cognitive theory and technology acceptance model in order to reflect the convergence characteristics between medical service and digital technology of telemedicine. Based on these theoretical backgrounds, we investigated perception toward telemedicine and determinants of intention to accept telemedicine. To examine the research model and hypothesis, an online survey was conducted for college students who have not used telemedicine from September 8 to 10, 2021. A total of 184 data were collected, and multiple regression analysis was conducted using the SPSS 28.0 program. The results showed that health technology self-efficacy, usefulness and convenience benefits, social norm, and trust in telemedicine providers had positive effects on intention to accept telemedicine. This study is meaningful in that it selected undergraduate students, who are digital natives, as new targets for telemedicine, and presented the basic direction of strategies to target them.

Exploring Narrative Intelligence in AI: Implications for the Evolution of Homo narrans (인공지능의 서사 지능 탐구 : 새로운 서사 생태계와 호모 나랜스의 진화)

  • Hochang Kwon
    • Trans-
    • /
    • v.16
    • /
    • pp.107-133
    • /
    • 2024
  • Narratives are fundamental to human cognition and social culture, serving as the primary means by which individuals and societies construct meaning, share experiences, and convey cultural and moral values. The field of artificial intelligence, which seeks to mimic human thought and behavior, has long studied story generation and story understanding, and today's Large Language Models are demonstrating remarkable narrative capabilities based on advances in natural language processing. This situation raises a variety of changes and new issues, but a comprehensive discussion of them is hard to find. This paper aims to provide a holistic view of the current state and future changes by exploring the intersections and interactions of human and AI narrative intelligence. This paper begins with a review of multidisciplinary research on the intrinsic relationship between humans and narrative, represented by the term Homo narrans, and then provide a historical overview of how narrative has been studied in the field of AI. This paper then explore the possibilities and limitations of narrative intelligence as revealed by today's Large Language Models, and present three philosophical challenges for understanding the implications of AI with narrative intelligence.

A Study on Smart Korean Cattle Livestock Management Platform based on IoT and Machine Learning (IoT 및 머신러닝 기반 스마트 한우 축사관리 플랫폼에 관한 연구)

  • Park, Jun;Kim, Jun Yeong;Kim, Jeong Hoon;Bang, Ji Hyeon;Jung, Se Hoon;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1519-1530
    • /
    • 2020
  • As livestock farms grow in size, the number of breeding individuals increases, making it difficult to manage livestock. Livestock farms require an integrated management system such as a monitoring system, an access control system, and an abnormal behavior detection system to manage livestock houses. In this paper, a smart korean cattle livestock management system using IoT and AI technology was proposed for livestock management in livestock farms. The smart korean cattle farm management system consists of a monitoring and control system, a vehicle access management system, and an abnormal cattle behavior detection system. It is expected that this will help manage large-scale livestock houses, and additional research is needed to improve the performance of abnormal behavior detection in the future.

Development and Application of Ethics Education STEAM Projects using DeepFake Apps (딥페이크 앱 활용 윤리교육 융합 프로젝트의 개발 및 적용)

  • Hwang, Jung;Choe, Eunjeong;Han, Jeonghye
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.405-412
    • /
    • 2021
  • To prevent problems such as portrait rights, copyright, and cyber violence, an ethics education STEAM projects using deepfake apps using AI technology were developed and applied. The Deepfake apps were screened, and the contents of the elementary school curriculum were reconstructed. The STEAM project as creative experiential activities was mainly operated by the UCC activities, and applied the info-ethics awareness measurement test based on the planned behavior theory. The social STEAM project as money (financial) education was qualitatively analyzed. It was found that this STEAM classes using AI technology app significantly enhances the ethical awareness of information communication.

AI based control theory for interaction of ocean system

  • Chen, C.Y.J.;Hsieh, Chia-Yen;Smith, Aiden;Alako, Dariush;Pandey, Lallit;Chen, Tim
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. Problem and objective: Based on the relaxed method, the chaotic system can be stabilized by regulating appropriately the parameters of dither. Scope and method: If the frequency of dither is high enough, the trajectory of the closed-loop dithered chaotic system and that of its corresponding model-the closed-loop fuzzy relaxed system can be made as close as desired. Results and conclusion: The behavior of the closed-loop dithered chaotic system can be rigorously predicted by establishing that of the closed-loop fuzzy relaxed system.

Detection of Avian Influenza-DNA Hybridization Using Wavelength-scanning Surface Plasmon Resonance Biosensor

  • Kim, Shin-Ae;Kim, Sung-June;Lee, Sang-Hun;Park, Tai-Hyun;Byun, Kyung-Min;Kim, Sung-Guk;Shuler, Michael L.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.392-397
    • /
    • 2009
  • We designed a wavelength interrogation-based surface plasmon resonance (SPR) biosensor to detect avian influenza DNA (AI-DNA). Hybridization reactions between target AI-DNA probes and capture probes immobilized on a gold surface were monitored quantitatively by measuring the resonance wavelength in the visible waveband. The experimental results were consistent with numerical calculations. Although the SPR detection technique does not require the DNA to be labeled, we also evaluated fluorescently-labeled targets to verify the hybridization behavior of the AI-DNA. Changes in resonance were found to be linearly proportional to the amount of bound analyte. A wavelength interrogation-type SPR biosensor can be used for rapid measurement and high-throughput detection of highly pathogenic AI viruses.

A Survey on Deep Learning-based Analysis for Education Data (빅데이터와 AI를 활용한 교육용 자료의 분석에 대한 조사)

  • Lho, Young-uhg
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.240-243
    • /
    • 2021
  • Recently, there have been research results of applying Big data and AI technologies to the evaluation and individual learning for education. It is information technology innovations that collect dynamic and complex data, including student personal records, physiological data, learning logs and activities, learning outcomes and outcomes from social media, MOOCs, intelligent tutoring systems, LMSs, sensors, and mobile devices. In addition, e-learning was generated a large amount of learning data in the COVID-19 environment. It is expected that learning analysis and AI technology will be applied to extract meaningful patterns and discover knowledge from this data. On the learner's perspective, it is necessary to identify student learning and emotional behavior patterns and profiles, improve evaluation and evaluation methods, predict individual student learning outcomes or dropout, and research on adaptive systems for personalized support. This study aims to contribute to research in the field of education by researching and classifying machine learning technologies used in anomaly detection and recommendation systems for educational data.

  • PDF

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Enhancing Empathic Reasoning of Large Language Models Based on Psychotherapy Models for AI-assisted Social Support (인공지능 기반 사회적 지지를 위한 대형언어모형의 공감적 추론 향상: 심리치료 모형을 중심으로)

  • Yoon Kyung Lee;Inju Lee;Minjung Shin;Seoyeon Bae;Sowon Hahn
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.23-48
    • /
    • 2024
  • Building human-aligned artificial intelligence (AI) for social support remains challenging despite the advancement of Large Language Models. We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce LLMs to reason about human emotional states. This method is inspired by various psychotherapy approaches-Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person-Centered Therapy (PCT), and Reality Therapy (RT)-each leading to different patterns of interpreting clients' mental states. LLMs without CoE reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathic responses aligned with each psychotherapy model's different reasoning patterns. For empathic expression classification, the CBT-based CoE resulted in the most balanced classification of empathic expression labels and the text generation of empathic responses. However, regarding emotion reasoning, other approaches like DBT and PCT showed higher performance in emotion reaction classification. We further conducted qualitative analysis and alignment scoring of each prompt-generated output. The findings underscore the importance of understanding the emotional context and how it affects human-AI communication. Our research contributes to understanding how psychotherapy models can be incorporated into LLMs, facilitating the development of context-aware, safe, and empathically responsive AI.