• 제목/요약/키워드: bed material

검색결과 584건 처리시간 0.023초

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • 제2권2호
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Model development for the estimation of specific degradation using classification and prediction of data mining (데이터 마이닝의 분류 및 예측 기법을 적용한 비유사량 추정 모델 개발)

  • Jang, Eun-kyung;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • 제53권3호
    • /
    • pp.215-223
    • /
    • 2020
  • The objective of this study is to develop a prediction model of specific degradation using data mining classification especially for the rivers in South Korea river. A number of critical predictors such as erosion and sediment transport were extracted for the prediction model considering watershed morphometric characteristics, rainfall, land cover, land use, and bed material. The suggested model includes the elevations at the mid relative area of the hypsometric curve of watershed morphomeric characteristics, the urbanization ratio, and the wetland and water ratio of land cover factors as the condition factors. The proposed model describes well the measured specific degradation of the rivers in South Korea. In addition, the development model was compared with the existing models, since the existing models based on different conditions and purposes show low predictability, they have a limit about the application of Korean River. Therefore, this study is focusing on improving the applicability of the existing model

Characteristics of Ammonia Removal in Biofilters Inoculated with Earthworm Cast. (분변토를 접종한 바이오필터의 암모니아 제거 특성)

  • 류희욱;한희동;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • 제30권1호
    • /
    • pp.73-78
    • /
    • 2002
  • Four inorganic packing materials (zeocarbon, porous celite, porous glass, zeolite) and a earthworm cast were compared with regard to the removal of ammonia in a biofilter inoculated with earthworm cast. Physical adsorption of ammonia on packing materials were negligible except zeocarbon (23.5 g-$NH_3$/kg), and cell immobilization capacity have similar values irrespective of packing materials. Pressure drops of the packed bed were in order of earthworm cast zeocarbon zeolite porous glass porous. The maximum elimination capacity ($g-Nkg^{-1}$ $d^{-1}$ ) of ammonia, which were based on a unit volume of packing material, were in order of zeocarbon (526) earthworm cast (220) porous celite (93) > zeolite (68) > porous glass (53). By using kinetic analysis, the maximum removal rates ($V_{m}$ ) and the saturation constant ($K_{s}$ ) for ammonia were determined, and zeocarbon showed superior performance among the five materials.

Penicillin Fermentation using a Carrier-supported Mycelial Growth (담체에 고정화된 균사체 증식을 이용한 페니실린의 발효)

  • Park, Sang K.;Kim, Jung H.;Park, Young H.
    • Microbiology and Biotechnology Letters
    • /
    • 제13권3호
    • /
    • pp.273-278
    • /
    • 1985
  • A carrier-supported mycelial growth of Penicillium chrysogenum was applied to penicillin fermentation system. Among various materials tested, celite was found to be most effective for both spore adsorption and bioparticle development. Hyphal growth through pore matrices of the material showed strong anchorages and provided highly stable biofilm growths. When 5-10% celite was employed, both cell growth and penicillin production were observed to increase significantly comparing to the dispersed filamentous growth. Specific productivity of penicillin, however. was found to be kept almost constant at a value of 1,900 unit/g cell/hr. A semicontinuous fermentation in a fluidized-bed reactor. using the tarrier-supported biofilm growth, was conducted successfully although free mycelia appeared in the late phase of the fermentation made the reactor operation difficult. Control of the size of bioparticles was considered as a major operating factor to maintain the reactor productivity at a desired level.

  • PDF

Change of the Intervertebral Foraminal Pressure after Removal of the Disc Material (디스크 제거 후 추간공내 압력의 변화)

  • Hong, Chang Kie;Park, Chong Oon;Hyun, Dong Keun;Ha, Young Soo
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권2호
    • /
    • pp.144-149
    • /
    • 2001
  • Objective : Spinal nerve root compression occurs commonly in conditions, such as herniated nucleus pulposus, spinal stenosis, intervertebral foraminal stenosis, and trauma. However, the pathophysiolosy of the symptoms and signs related to spinal nerve root compression is poorly understood. The purpose of the present study was to assess and compare the changes of various pressures of intervertebral foraminal pressure before and after decompression. Method : After laminetomy without foraminotomy was performed, pressure sensor tip of Camino parenchymal type was located at the middle-central portion of the intervertebral foramen and anterior portion of nerve root for the foraminal pressure before decompression of the intervertebral foramen. After laminectomy with foraminotomy, the same method was used for the foraminal pressure after decompression. The authors studied 40 consecutive patients (57 disc spaces) with severe constant root pain to the lower leg, pain unrelived by bed rest, and minimal tension signs, diagnosed by MRI. Results : In patients with intervertebral foraminal stenosis, the intraforaminal pressure was decreased from $86{\pm}2.23mmHg$ to $17.1{\pm}1.51mmHg$ and in patients without stenosis, from $55.9{\pm}1.08mmHg$ to $11.9{\pm}1.25mmHg$. All patients below 20mmHg after decompression showed good outcome, but 4 cases who showed poor outcome had foraminal stenosis, posterolateral type of the herniated disc, and above 30mmHg of foraminal pressure after decompression. Conclusion : These findings suggest that if the foraminal pressure falls below 20mmHg after decompression, good outcome can be anticipated. Central type of the herniated disc shows better outcome compared to the posterolateral type.

  • PDF

REACTION STEPS OF A FORMATION OF THE BLACK LAYER BEIWEEN IRON NTIRIDE AND TiN COATING

  • Baek, W.S.;Kwon, S.C.;Lee, J.Y.;Rha, J.J.;Lee, S.R.;Kim, K.H.
    • Journal of the Korean institute of surface engineering
    • /
    • 제32권3호
    • /
    • pp.312-316
    • /
    • 1999
  • The interfacial structure of duplex treated AISI 4140 consisting of iron nitride and TiN layer was characterized by optical microscope, SEM and XRD. A black layer was formed from the decomposition of iron nitride during Ti ion bombardment. The black layer was characterized as an a-Fe phase transformed from the iron nitride by XRD. In order to identify the formation mechanism of the black layer, a thermal analysis of iron nitride undertaken by DSC method. As an iron nitride was mostly consisted of ${\gamma}$'-Fe$_4$N and $\varepsilon$-$Fe_3$N phase after plasma nitriding, in this study, a ${\gamma}$'$-Fe_4$N and $\varepsilon$-$Fe_3$N powders were separately prepared by the different processing conditions of gas nitriding of iron powder in the fluidized bed. From the DSC thermal analysis, the phase transformation of ${\gamma}$'$-Fe_4$N, $\varepsilon$-$Fe_3$N was followed the path of transformation; $ \Upsilon{'}-Fe_4$Nlongrightarrow${\gamma}$-Felongrightarrowa-Fe and of $\varepsilon$-$Fe_3$Nlongrightarrow$\varepsilon$-$Fe_{2.5}$ /N+${\gamma}$'$-Fe_4$Nlongrightarrow${\gamma}$'-Fe$_4$Nlongrightarrow${\gamma}$longrightarrowFelongrightarrowalongrightarrowFe, respectively. It explains the reason why the $\varepsilon$ $-Fe_3$N phase disappeared in the first time and then ${\gamma}$'-Fe$_4$N in the formation of the black layer in the duplex coating.

  • PDF

The Strength Characteristics of PVA Fiber Reinforced CSG Materials (PVA섬유 보강 CSG 재료의 강도특성)

  • Jin, Guang-Ri;Kim, Ki-Young;Quan, He-Chun;Kim, Kyu-Won
    • Journal of the Korean Geotechnical Society
    • /
    • 제29권12호
    • /
    • pp.95-104
    • /
    • 2013
  • Recently, application of CSG is increasing in various design construction projects. At the initial stage of cementation CSG materials show the same mechanical characteristics as soil, however, as the cementation process develops, CSG materials gradually reveal material characteristics of concrete. The hardened CSG manifests elastic behavior such as maximum strength at small strain range and rapid brittle failure. In this research, PVA fiber stiffeners were used in order to: (1) reduce such brittle behavioral characteristics; (2) improve the relatively weak tension performance of CSG materials. The binding strength between the bed materials and fiber prevents rapid brittle failure and increases tensional strength of fiber reinforced CSG materials.Test results show that fiber reinforcement alone could induce the stress-strain characteristics of CSG materials from brittle failure to ductile failure and also increase the residual strength.

Hydrogels with diffusion-facilitated porous network for improved adsorption performance

  • Pei, Yan-yan;Guo, Dong-mei;An, Qing-da;Xiao, Zuo-yi;Zhai, Shang-ru;Zhai, Bin
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2384-2393
    • /
    • 2018
  • Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-$CaCO_3$ as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as $1,426.0mg\;g^{-1}$. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50 minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.

A Study on the Development of Stability Evaluation Technique for Bed Material Using High Speed Flow Measurement Instruments (고유속 조건에서 하상재료의 안정성 평가 기법 개발에 관한 연구)

  • Jung, Dong Gyu;Kim, Kwang Soo;Kim, Young Do;Park, Jae Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.79-79
    • /
    • 2018
  • 하천시설물 설계, 시공 및 관리에 재료에 따른 호안이나 제방의 보호능력이 저하되어 설계 시 예상하지 못한 조건에서 쉽게 파손될 수 있으며, 하천환경의 변화를 야기시킬 수 있다. 제방 표면재료는 제외 비탈면의 침식 방지를 목적으로 사용되는 재료로 주로 호안블록. 식생 매트, 사석, 돌망태, 식생등이 주로 사용되며 국내에서는 2000년대 이전에는 자연 흙사면의 식생, 돌망태, 단순 돌기형 콘크리트 블록 등이 주로 사용되었으며 2000년대 이후에는 하천환경을 고려하여 식생의 생장이 가능한 친환경 호안 블록 및 식생 매트의 적용이 일반적인 실정이다. 제방의 수리적 설계를 위해서는 표면 재료의 수리 특성, 즉, 조도계수 및 한계 유속, 한계 소류력이 제시되어야 하는데 이는 실험을 통해서 결정되어야 한다. 때문에 본 연구에서는 자연형 하상재료를 이용하여 바이오 폴리머 첨가시 증가하는 방어능력에 대한 향상도를 평가하는 실험적 평가 방법을 제안하기위해 홍수시 수리조건을 반영하여 상류에서부터 사류까지 다양한 유속범위에 따른 세굴 및 침식에 대한 실험을 진행하였다. 본 연구에서는 실험연구를 통해 연구에 사용된 재료 외 추가적인 재료에 대해서도 평가방법이 적용될 수 있도록 제방 재료의 안정성 평가시스템을 개발하였고, 안정성 평가를 위한 실험진행은 기 개발된 바닥응력을 직접측정하는 장치와 PIV시스템을 이용하여 수리특성을 측정하였다.(Park J.H. et al. 2016, Flow Measurment and instrumentation.) 이러한 측정 장치를 이용하여 바이오폴리머의 첨가에 유무에 따라 세굴에 대한 방어능력의 향상정도를 측정하고자 세굴 및 침식에 대한 평가 방법을 제시하고 있다.

  • PDF