• Title/Summary/Keyword: bed level change

Search Result 75, Processing Time 0.024 seconds

A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields (파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델)

  • Lee, Jong Sup;Yoon, Eun Chan;Park, Seok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.311-319
    • /
    • 2006
  • A bed level change model(SED-FLUX) is introduced based on the realistic sediment transport process including bed load and suspended load behaviours at the bottom boundary layer. The model SED-FLUX includes wave module, hydrodynamic module and sediment transport and diffusion module that calculate suspended sediment concentration, net sediment erosion flux($Q_s$) and bed load flux. Bed load transport rate is evaluated by the van Rijn's TRANSPOR program which has been verified in wave-current fields. The net sediment erosion flux($Q_s$) at the bottom is evaluated as a source/sink term in the numerical sediment diffusion model where the suspended sediment concentration becomes a verification parameter of the $Q_s$. Bed level change module calculates a bed level change amount(${\Delta}h_{i,j}$) and updates a bed level. For the model verification the limit depth of the bed load transport is compared with the field experiment data and some formula on the threshold depth for the bed load movement by waves and currents. This model is applied to the beach profile changes by waves, then the model shows a clear erosion and accumulation profile according to the incident wave characteristics. Finally the beach evolution by waves and wave-induced currents behind the offshore breakwater is calculated, where the model shows a tombolo formation in the landward area of the breakwater.

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

Prediction of Long-Term River Bed Changes in Saemangeum Area (새만금지구 장기 하상변동 예측)

  • Jung, Jae-Sang;Song, Hyun Ku;Lee, Jong Sup;Kim, Gweon Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.394-398
    • /
    • 2016
  • Numerical analysis was conducted using Delft3D developed by Deltares in Netherlands to predict long-term river bed changes in Saemangeum Area. Tidal flow, discharge through the drainage gates and river bed changes in numerical model was verified by comparing to the results of field observation and hydraulic experiments. We calculated long-term river bed changes in Saemangeum area for 10 years from 2031 to 2040 after completion of development in Saemangeum. It is shown that 70 cm and 139 cm of accumulation occur in estuaries of Dongjin River and Mankyong River, respectively. Variation of flood level was also investigated considering long-term river bed changes. There was no change in estuary of Dongjin River but maximum flood level in estuary of Mankyong River increased 81 cm.

  • PDF

Operating condition and air pollutant emission when do RPF co-combustion in coal fluid bed boiler (석탄유동층 보일러에 RPF 혼소시 운전조건 및 대기오염물질 배출 특성 변화)

  • Yoon, Kyoon-Duk;Park, In-Chul;park, Jong-Kyeong;Cho, Yeon-Haeng;Choi, Yeon-Seok;Shun, Do-Won;Park, Do-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.527-530
    • /
    • 2006
  • Because price of fossil fuel rises, necessity about alternative energy was risen. Studied co-combustion of RPF to coal fluid bed boiler by necessity of these althernative energy. Purpose of this study to coal fluid bed bioler RPF when did co-combustion, change operating condition and characteristic of air pollutant examine according to change of fuel characteristic, operating condition examined about combustion chamber temperature, oxygen content etc. and air pollutant examined about material that is included to allowable exhaust standard and dioxin. Co-combustion condition was 5%. It was no peculiar under test result operating condition. Concentration of Co and HCl rose according as do RPF co-combustion and the other pollutants had hardly changed. Dioxin is low concentration level more than $0.1ng-TEQ/Sm^3$. There was no pollutant that exceed akllowable exhaust standard for boiler but $SO_x,\;NO_x$ were exceeded about allowable exhaust standard for incinerating facility.

  • PDF

Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model (CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토)

  • Jang, Eun Kyung;Ji, Un;Kwon, Yong Sung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2211-2221
    • /
    • 2013
  • During the four river restoration project, several weirs were constructed in the four rivers to prevent drought and flood, to improve water quality, and to manage water resources. However, due to the weir construction, bed changes are produced in the upstream channel of installed weirs because the incoming flow velocity is reduced and sediment transport capacity is also lowered. Especially, since the Haman Weir is located in the lowest downstream section among newly installed weirs in Nakdong River, bed change and sedimentation problems are expected due to the mild slope and reduced velocity. Therefore, numerical simulation was performed to analyze flow and bed changes in the upstream channel of Haman Weir and to evaluate quantitatively sediment control methods for bed stabilization using CCHE2D model. As a result of flow and bed change simulation after installation of Haman Weir, the flow velocity at the initial condition was faster than the final bed condition with the specific simulation time and it was represented that the locations where bed changes were great were identical for all modeling conditions of flow discharge. In case of 4.5 m of water level lowered from 5.0 m of the management water level at Haman Weir for bed stabilization, the flow velocity was generally faster than the case of the management water level and the continuous erosion was developed at the most narrow channel section as the applied discharge and simulation period were increased. The channel width extension at the most narrow channel section was proposed in this study to prevent and stabilize continuos bed erosion. As a result of numerical analysis, there was no bed erosion after channel width extension and it was presented that the channel geometry extension was effective for bed stabilization at Haman Weir.

Change of Hydraulic Characteristics in the Downstream Keum River after the Construction of Estruary Dam (금강하구둑 건설로 인한 금강하류부의 수리 특성 변화)

  • 박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.68-76
    • /
    • 1999
  • The purpose of the study was to investigated the change of hydraulic characteristics like water surface profile and rivered section in the down stream of Keum river after the construction of esturary dam. The effect of esturary dam on the flood control in the Keum river was recognized with the data of two flood events happened in July, 1987 before the construction and in August, 1995 after the construction of estuary dam. For example , duration time above the water level of the warning -flood was changed from 46.5 to 42.8 hours and duration time above the eater level of the danger-flood was changed from 24.7 to 19.8 hours at the Kyuam station. The time difference to reach the water level of the designated -flood between Kyuam and Kangkyung was changed from 3 hours in 1987 to 12 hours and 20 minutes in 1995. The water surface slope of river decreased 25.6% between estuary dam and Kangkyung and increased 16.5% between Kangkyung and Kyuam, and decreased 8.8% between Kyuam and Kongju. As the result, velocity was getting faster and river bed was scoured in the reach of Kangkyung and Kyuam, and velocity was getting slower and river bed was sedimented in the reach of Kangkyung and estury dam.

  • PDF

Analysis of Correlation on Physical Characteristics and Bed Materials in Natural Rivers (자연하천에서 하도의 물리적 특성과 하상재료의 상관관계분석)

  • Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • The purpose of this study is to analyze the correlation between physical stream characteristics and bed materials in natural rivers. Accordingly, four natural rivers were selected reference streams, they were Nam river, Sumjin River, Naesung River and Han River. Grain size distributions of bed materials were gravels, cobbles and boulders in Han river and Nam river, were sand, gravels, cobbles and boulders in Sumjin river and were sand in Naesung river. Four reference streams were divided into each two reference reaches (straight and bend) by plan and profile characteristics of naturally meandering stream. Therefore various reference reaches were chosen in the aspect of physical stream characteristics and grain size distributions. The results investigated and analyzed are as follows. The streams that grain sizes distributions of river bed materials were coarse were stable because they had variety of bed slope without sediment deposition, and then the riffles frequency and the physical characteristics were various. Also, velocitydepth regime were various in four kinds, and the response parts for water level change were small, so that channel flow status were stable and excellent condition. On the other hand, sand river that grain sizes distributions of river bed materials were fine had not the variety of parameters as velocity-depth regimes, sediment deposition, channel flow status and riffles frequency, so that the physical stream characteristics were not various.

An Analysis of Long-Term River Bed Changes using Surface-water Modeling System (SMS) Model: A case study of the Pochon stream basin (SMS 모형을 이용한 포천천 유역에서의 장기하상변동 분석)

  • Choi, Min-Ha;Lee, Seung-Oh;Ahn, Jae-Hyun;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • More precise estimation of the bed change, primary cause of flood damage, has been recognized significant for designs of levees and other river facilities. In this study, the long-term bed change was examined as the application of the relatively new Surface-water Modeling System (SMS) Model because there has not been broad verification of the model empirically on river of South Korea. This 2-dimensional model was used to examine the bed change of Pochon Stream Basin, a tributary of Imjin River, where heavy rain damages annually occur. First, in order to verify the model, the simulating period was set from 1986 to 1998 because of the existence of the field measurements. Cross sectional field measurements of 1986 were used for the initial condition and output were compared and analyzed with the observed cross sectional data in 1998. As the results of the verification, the comparison in lateral and streamwise bed level between results from the model and the field measurements showed a reasonable agreement except for the some cases of local scours. However, in terms of the quantitative comparison, the change of the bed elevations for each cross section for 1998 was rather underestimated than that of the field measurements.

Analyzing the Flood Inundation in Low Agricultural Area (저지대 농경지의 홍수범람 분석)

  • Jun, Kye-Won;Lee, Ho-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.17-24
    • /
    • 2007
  • This study analyzes the flood inundation in low agricultural area caused by rainfall during typhoon periods and how flood inundation areas should be affected. GIS techniques, HEC-HMS and HEC-GeoHMS were used for flood runoff, HEC-RAS was applied in water surface elevation analysis at each cross-section. RMA2, SED2D were applied for runoff characteristics of inundation areas and river bed change and distribution of sediment. As a result, velocity distribution was analyzed 2.6 m/s-3.4 m/s in flood inundation by water level increase. In the case of bed elevation change, most sediments were deposited to the parts that adjoin bank.