• Title/Summary/Keyword: bed joint

Search Result 72, Processing Time 0.023 seconds

Shear behaviour of AAC masonry reinforced by incorporating steel wire mesh within the masonry bed and bed-head joint

  • Richard B. Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.363-382
    • /
    • 2024
  • In India's north-eastern region, low-strength autoclaved aerated concrete (AAC) blocks are widely used for constructing masonry structures, making them susceptible to lateral forces due to their low tensile and shear strengths and brittleness nature. The absence of earthquake-resistant attributes further compromises their resilience during seismic events. An economically viable solution to enhance the structural integrity of these masonry structures involves integrating steel wire mesh within the masonry mortar joints. This study investigates the in-plane shear behaviour of AAC masonry by employing two approaches: incorporating steel wire mesh within the masonry bed joint "BJ" and the masonry bed and head joint "BHJ". These approaches aim to augment strength and ductility, potentially serving as earthquake-resistant attributes in masonry structures. Three distinct variations of steel wire mesh and three reinforcing arrangements, i.e. (-), (L) and (Z) arrangement were employed to reinforce the two approaches. The test result reveals a significant enhancement in structural performance upon inclusion of steel wire mesh in both reinforcing approaches, with the "BHJ" approach outperforming the "BJ" approach and the unreinforced masonry, along with increase in capacity as the wire mesh size increases. Furthermore, the effectiveness of the reinforcing arrangement is ranked with the (Z) arrangement showing the largest performance, followed by the (L) and (-) arrangement.

Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed-head joint

  • Richard Badonbok Lyngkhoi;Teiborlang Warjri;Comingstarful Marthong
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • Over the course of the last 4-5 years, India's northeastern region have widely used Autoclaved Aerated Concrete (AAC) blocks to construct load-bearing masonry structures. The aim of this investigation is to examine the shear characteristics of AAC masonry triplet assemblage strengthened by using two techniques, i.e., the bead joint (BJ) and the bed-head joint (BHJ) technique. Three unique variations of wire mesh were involved in the strengthening method. Furthermore, three strengthening configurations were used to strengthen each of the three wire mesh variations and the two-strengthening method, i.e. (-), L and (Z) configuration. The unreinforced and reinforced triplet masonry wallets were tested under direct shear test. From the results obtained, the 'BJ'triplet masonry wallets observed an enhanced in shear strength of about 2.23% to 23.33 % whereas the 'BHJ' triplet masonry wallets observed an enhanced in shear strength of about 22.92% to 50.69%. The "BHJ" strengthening method effectively enhance the shear strength of the triplet masonry wallets compared to the "BJ" and the "UR" wallets with an increase in capacity as the wire mesh strength increases. Furthermore, in terms of the strengthening configuration, the (Z) configuration performs better, followed by the (L) and (-) configuration demonstrating the strengthening configuration effectiveness.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

Influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under cyclic compressive loading

  • Nazar, Maqsud E.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.585-599
    • /
    • 2006
  • This paper describes a series of laboratory tests carried out to evaluate the influence of bed joint orientation on interlocking grouted stabilised mud-flyash brick masonry under uniaxial cyclic compressive loading. Five cases of loading at $0^{\circ}$, $22.5^{\circ}$, $45^{\circ}$, $67.5^{\circ}$ and $90^{\circ}$ with the bed joints were considered. The brick units and masonry system developed by Prof. S.N. Sinha were used in present investigation. Eighteen specimens of size $500mm{\times}100mm{\times}700mm$ and twenty seven specimens of size $500mm{\times}100mm{\times}500mm$ were tested. The envelope stress-strain curve, common point curve and stability point curve were established for all five cases of loading with respect to bed joints. A general analytical expression is proposed for these curves which fit reasonably well with the experimental data. Also, the stability point curve has been used to define the permissible stress level in the brick masonry.

A Study on Rock Mass Classification in Quartzite Rock Bed with Consideration of Joint Frequency (절리빈도를 고려한 규암 암반에서의 합리적인 암판정 연구)

  • Lee, Su-Gon;Kim, Min-Sung;Lee, Kyung-Soo;Lee, Chi-Hong
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.102-108
    • /
    • 2007
  • Generally, the method used most widely for rock mass classification is considering the rock strength and development of joint frequency. However, if rock bed has micro-crack and long joint, this method is not rational. Therefore, the difficulties of excavation in the rock bed with complicated geological condition are decided by combining joint frequency. indoor tests (uniaxiall compressive strength, point load test, indoor elastic wave velocity, etc.) and field seismic refraction survey, and the rock mass classification should be implemented by considering their interrelationship.

Joint Characteristics in Sedimentary Rocks of Gyeongsang Supergroup (경상누층군 퇴적암의 절리 특성 연구)

  • Chang, Tae-Woo;Son, Byeong-Kook
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.351-363
    • /
    • 2009
  • Two orthogonal joint sets develop well only in sandstone beds in the sandstone-mudstone sequences of Gumi and Dasa outcrops within Cretaceous Gyeongsang Basin. And various joint data are similar in the beds of the same thickness in both outcrops, meaning that the joint sets were homogeneously produced by extensional deformation in the same regional stress field. Most of joints in the sandstone beds are orthogonal to, and confined by bed boundaries, which are believed to be formed by hydrofracturing during consolidation after burial. Two orthogonal joint sets are considered to be almost coeval on the basis of mutual abutting relationship which makes up fracture grid-lock and a product of rapid switching of ${\sigma}_2$ and ${\sigma}_3$ axes with constant ${\sigma}_1$ direction oriented to vertical. The joint sets in the sandstone beds show planar surfaces, parallel orientations and regular spacing, with joint spacing linearly proportional to bed thickness. The spacing distributions of the joints seem to correspond to log-normal to almost normal distribution in most of the beds. But multilayer joints do not display regular spacing and dominant size. Either joint set in this study is characterized by a high level of joint density and a saturated spacing distribution as indicated by the mode/mean ratio values and the Cv(coefficient of variance) values. Joint aperture tends to increase with the vertical length of the joints controlled by bed thickness.

Prism Compressive Strength of Non-structural Concrete Brick Masonry Walls According to Workmanship (시공정밀도에 따른 비구조용 콘크리트벽돌 조적벽체의 프리즘 압축강도)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.127-136
    • /
    • 2020
  • Prism compressive strength is the most influential parameter to evaluate the seismic performance of non-structural concrete brick masonry walls, and is affected by the practice and workmanship of masonry workers. This study experimentally investigates the influence of workmanship on prism compressive strength throughout the compressive test with prism specimens constructed according to masonry workmanship. To do this, the workmanship is categorized into good, fair, and poor conditions which are statistically evaluated with thickness and indentation depth of bed-joints. Then, the effect of workmanship on the structural properties of masonry prisms is evaluated by investigating relations between properties such as their compressive strength, elastic modulus and numerical parameters such as thickness, filling of bed-joints. This study demonstrates that the indentation depth is more important parameter for structural properties of masonry prisms and masonry prisms with loss in bed-joint area less than of 7% can be in fair condition.

Development of Patient Transfer Techniques based on Postural-stability Principles for the Care Helpers in Nursing Homes and Evaluation of Effectiveness (자세안정성 원리에 기반한 환자이동기술 개발 및 효과검정)

  • Ma, Ryewon;Jung, Dukyoo
    • Journal of Korean Academy of Nursing
    • /
    • v.46 no.1
    • /
    • pp.39-49
    • /
    • 2016
  • Purpose: This study was done to develop a postural-stability patient transfer technique for care helpers in nursing homes and to evaluate its effectiveness. Methods: Four types of patient transfer techniques (Lifting towards the head board of the bed, turning to the lateral position, sitting upright on the bed, transferring from wheel chair to bed) were practiced in accordance with the following three methods; Care helpers habitually used transfer methods (Method 1), patient transfer methods according to care helper standard textbooks (Method 2), and a method developed by the author ensuring postural-stability (Method 3). The care helpers' muscle activity and four joint angles were measured. The collected data were analyzed using the program SPSS Statistic 21.0. To differentiate the muscle activity and joint angle, the Friedman test was executed and the post-hoc analysis was conducted using the Wilcoxon Signed Rank test. Results: Muscle activity was significantly lower during Method 3 compared to Methods 1 and 2. In addition, the joint angle was significantly lower for the knee and shoulder joint angle while performing Method 3 compared to Methods 1 and 2. Discussion: Findings indicate that using postural-stability patient transfer techniques can contribute to the prevention of musculoskeletal disease which care helpers suffer from due to physically demanding patient care in nursing homes.

Cyclic compressive loading-unloading curves of brick masonry

  • AlShebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.375-382
    • /
    • 2000
  • Experimental investigation into the cyclic behaviour of sand plast brick masonry was performed on forty two square panels. The panels were subjected to cyclic uniaxial compression for two cases of loading: normal to bed joint and parallel to bed joint. Experimental data were used to plot the unloading-reloading curves for the entire range of the stress-strain curve. Mathematical expressions to predict the reloading and unloading stress-strain curves at various values of residual strain are proposed. A simple parabola and an exponential type formula are found adequate to model the unloading and reloading curves respectively. The models account for the potential effects of residual strain on these curves. Comparison of test results with the proposed mathematical expression shows good correspondence.

Deformation characteristics of brick masonry due to partial unloading

  • Alshebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.565-574
    • /
    • 2001
  • Experimental investigation into the behaviour of half-scale brick masonry panels were conducted under cyclic loading normal to the bed joint and parallel to the bed joint. For each cycle, full reloading was performed with the cycle peaks coinciding approximately with the envelope curve. Unloading, however, was carried out fully to zero stress level and partially to two different stress levels of 25 percent and 50 percent of peak stress. Stability point limit exhibits a unique stress-strain curve for full unloading but it could not be established for partial unloading. Common point limit was established for all unloading-reloading patterns considered, but its location depends on the stress level at which unloading is carried to. Common point curves were found to follow an exponential formula, while residual strains versus envelope strains can be expressed by a polynomial function of a single term. The relation between residual strain and envelope strain can be used to determine the stress level at which deterioration due to cyclic loading began.