• Title/Summary/Keyword: bed combustion

Search Result 337, Processing Time 0.031 seconds

Evaluation of Domestic CCPs(Coal Combustion Products) Quality by API Test Method (API시험법에 의한 국내 석탄회의 품질 평가)

  • Yoo, Sung-Won;Yu, Kyung-Geun;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of industrial by-products and CO2 reduction have been important issues in the world. In this reason, applications and reuse of Fly ash as a binder for concrete, which is generated in thermoelectric power plant, have been one of the effective recycle methods. In order for Fly ash to be applied to concrete, Korean Standard(KS) has selected and managed quality such as $SiO_2$, fineness, specific gravity, ignition loss and activity index. However, there is a limits for activity index, whose test period required is at least 28 days or 91 days. Activity index is the critical indication standard to determine mechanical strength of concrete that contained Fly ash. To complement the disadvantage of test method, this research provided "API test method", which quickly measure Pozzolanic reaction of Fly ash can be considered as a alternative of activity index. Then, the adaptable API test method need to be investigated through comparative analysis with the test result of API, activity index and K-value. The test method can make evaluation of Fly ash quality faster and more accurate. As a result, most Fly ash produced in Korea has not been satisfied in the KS quality standard except water content and specific gravity, and especially fluidized bed boiler ash has its characteristics. Also, API, activity index and K-value have superior interrelationship. The interrelationship between API and activity index and K-value gets increased as the material age gets higher, so API test can be considered as very useful test method for Pozzolanic reaction evaluation of Fly ash.

Fabrication Process and Prospect of the Ceramic Candle Filter by Ramming Process (래밍성형에 의한 세라믹 캔들 필터 제조공정 및 전망)

  • Seo, Doowon;Han, Insub;Hong, Kiseog;Kim, Seyoung;Yu, Jihang;Woo, Sangkuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.113.2-113.2
    • /
    • 2010
  • 세라믹 필터는 여러 종류의 분진제거 시스템에서 연소 배가스 정제를 위한 가장 적절한 소재로 알려져 있다. 현재까지 다양한 형태의 세라믹 필터가 개발되고 있는데, 캔들 타입(candle type), 튜브 타입(tubular type), 평판 타입(parallel flow type) 등이 그 예이다. 통상적으로 세라믹 캔들 필터는 가압유동층복합발전(PFBC, Pressurize Fluidized-Bed Combustion), 석탄가스화복합발전(IGCC, Integrated coal Gasification Combined Cycle), 석탄가스화연료전지복합발전(IGFC, Integrated coal Gasification Fuel cell Combined cycle)에서 고온 배가스 정제용으로 사용되고 있다. 일반적으로 IGCC나 CTL 합성가스 정제시스템의 경우에는 높은 고압(약 25기압)과 미세분진이 함유되어 있는 분위기에서 운전된다. 그러므로 이때 사용되는 초청정용 세라믹 집진필터는 고온, 고압 및 부식 환경에서 50 MPa 이상을 갖는 높은 강도와 내식성을 갖도록 개발되어야 하기 때문에 SiC(Silicon Carbide)가 가장 적절한 캔들 필터 소재로 적용되고 있다. 이에 따라 집진용 SiC 세라믹 캔들 필터를 개발하기 위해서는 고온에서 내산화성이 우수하고, 부피팽창에 의한 균열이 발생하지 않는 무기결합재의 선정 및 이를 통한 소재의 특성 최적화가 가장 중요한 부분이라 할 수 있다. 본 연구에서는 래밍성형 공정을 적용하여 1m급 탄화규소 세라믹 캔들 필터 시작품을 제조하였으며, 래밍성형 공정 이외에 정수압가압성형, 진공압출성형으로 제조되고 있는 세라믹 캔들 필터의 국내외 시장 및 그 전망을 분석하였다.

  • PDF

Effect of Strontium Carbonate Inorganic Binder Addition on Ceramic Candle Filter Matrix (세라믹 캔들 필터 지지체의 스트론튬 카보네이트 무기결합재 첨가 영향)

  • Han, Insub;Seo, Doowon;Hong, Kiseog;Kim, Seyoung;Yu, Jihang;Woo, Sangkuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.109.2-109.2
    • /
    • 2010
  • 세라믹 필터는 여러 종류의 분진제거 시스템에서 연소 배가스 정제를 위한 가장 적절한 소재로 알려져 있다. 현재까지 다양한 형태의 세라믹 필터가 개발되고 있는데, 캔들 타입(candle type), 튜브 타입(tubular type), 평판 타입(parallel flow type) 등이 그 예이다. 통상적으로 세라믹 캔들 필터는 가압유동층복합발전(PFBC, Pressurize Fluidized-Bed Combustion), 석탄가스화복합발전(IGCC, Integrated coal Gasification Combined Cycle), 석탄가스화연료전지복합발전(IGFC, Integrated coal Gasification Fuel cell Combined cycle)에서 고온 배가스 정제용으로 사용되고 있다. 일반적으로 IGCC나 CTL 합성가스 정제시스템의 경우에는 높은 고압(약 25기압)과 미세분진이 함유되어 있는 분위기에서 운전된다. 그러므로 이때 사용되는 초청정용 세라믹 집진필터는 고온, 고압 및 부식 환경에서 50 MPa 이상을 갖는 높은 강도와 내식성을 갖도록 개발되어야 하기 때문에 SiC(Silicon Carbide)가 가장 적절한 캔들 필터 소재로 적용되고 있다. 이에 따라 집진용 SiC 세라믹 캔들 필터를 개발하기 위해서는 고온에서 내산화성이 우수하고, 부피팽창에 의한 균열이 발생하지 않는 무기결합재의 선정 및 이를 통한 소재의 특성 최적화가 가장 중요한 부분이라 할 수 있다. 본 연구에서는 IGCC나 CTL 공정에 적용하기 위한 SiC 캔들 필터 소재 개발을 위해 래밍성형 공정으로 1m급의 탄화규소 캔들 필터 시작품을 제작하여 SiC 출발입자 크기와 무기계 결합재인 스트론튬 카보네이트의 첨가량 변화에 따른 필터 소재의 특성 평가를 수행하였다.

  • PDF

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.

Effect of H2S on Reactivity of Oxygen Carrier Particle for Chemical Looping Combustion (매체순환연소용 산소전달입자의 반응성에 미치는 H2S의 영향)

  • KIM, HANA;MOON, JONG-HO;JIN, GYOUNG-TAE;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.412-420
    • /
    • 2016
  • Effect of $H_2S$ on reactivity of oxygen carrier was measured and discussed using fluidized bed reactor and SDN70 oxygen carrier. We could get 100% of fuel conversion and $CO_2$ selectivity even though $H_2S$ containing simulated syngas was used as fuel for reduction. Absorbed sulfur was released during oxidation and $N_2$ purge step after oxidation as $SO_2$ form. We could get 100% of fuel conversion and $CO_2$ selectivity during cyclic reduction-oxidation tests up to 10th cycle. However, only 6~7% of sulfur can be removed during oxidation and $N_2$ purge step and 93~94% of sulfur was accumulated in the oxygen carrier. Therefore we could conclude that total removal of sulfur was not possible. $SO_2$ emission during oxidation decreased as the number of cycle increased. Therefore we could expect that the reactivity of oxygen carrier will be decreased with time.

A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine (터보과급 디젤기관의 과도운전시 응답성능에 관한 연구)

  • 최낙정;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1575-1582
    • /
    • 1992
  • This study describes the response performances of actual engine speed, turbocharger speed, air mass flow rate through engine, boost pressure ratio, exhaust temperature and combustion efficiency for a six-cylinder four-stroke turbocharged diesel engine during the change in operating conditions by using the computer simulation with test bed. In order to obtain the transient conditions, a suddenly large load was applied to the simulation engine with the several kinds of inertia moment in turbocharger and engine, and engine set speed. From the results of this study, the following conclusions were summarized The inferior response performances was mainly caused by turbocharger lag, and air mass flow rate and boost pressure ratio were closely related to the turbocharger speed. A reduced moment of turbocharger inertia resulted in less transient speed drop and much faster recovery to the steady state of the engine. The increase of moment of engine inertia reduced cyclic variation of engine speed. When a large load was applied to the engine at high speed, the engine could be fastly recovered. However, when the same load was applied to the engine at low speed, the engine was stalled.

A Study on the Mechanical Properties of Polymer Repair-Mortars with CFBC Ash (순환유동층 보일러애시를 활용한 폴리머 보수 모르타르의 역학적 특성에 대한 연구)

  • Kang, Yong Hak;Lim, Gwi Hwan;Shin, Dong Cheol;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.127-132
    • /
    • 2018
  • The amount of generated Circulating Fluidized Bed Combustion ash (CFBC ash) is annually increasing, but most CFBC ash has been landfilled and discarded due to the limited utilization. The major chemical compositions of CFBC ash are $SiO_2$, CaO and $CaSO_4$, which could form hydration products by reacting with water as self-cementing property such as cement. The purpose of the this study is to derive the optimal mix proportions to improve polymer-modified mortar with the use of CFBC ash which has the self-cementing property. In order to develop polymer-modified mortar, three mix proportions were determined, and fundamental properties for the mixtures were obtained. As a result, the optimal mixture containing 10 percent of silica fume, 1.0 percent of polymer and 3.5 percent of expansive additives were proposed in this study.

Economic Analysis on Repowering Plans for a Outworn Anthracite Power Plant (노후 무연탄발전소의 리파워링 방안에 대한 경제성 분석)

  • Kim, Su-Man;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • In this study, repowering scenarios are analyzed and evaluated from the economical point of view on a case by case basis. Based on the result of evaluation, the IRR indicates 2.34% on single 750 MW LNG combined cycle unit, 3.56% on 500 MW sub-bituminous PC units and 2.31% on 200 MW circulating fluidized bed combustion units, resulting in not reaching 7% rate of discount rate and being concluded uneconomical. However, proposes that it is most economical and feasible to repower power plant into 750 MW LNG combined cycle unit as long as the economic feasibility can be improved and it is necessary for old anthracite power plant to be repowered than rebuilt under the circumstances of lacking power supply.

  • PDF

Properties of Cement Mortar According to Substitution Ratio of High Calcium Fly Ash Based on Blast Furnace Slag (고로슬래그 기반 고칼슘 플라이애시 치환비율에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • In the industry, due to the carbon dioxide gas produced during cement production is increasing, research on recycling by-products has been actively conducted. In the industrial by-products, the high calcium fly ash(HCFA) produced by the blast-furnace in the circulating fluidized bed combustion method has a high ratio of CaO and CaSO4. In view of this, the purpose of this is to use high calcium fly ash(HCFA) as a stimulant in blast furnace slag powder and use it as a cement substitute. As a result, it is judged that the substitution ratio of HCFA should be 15% or less. In addition, although durability and strength are relatively lower than of OPC, it is considered that it can be utilized as an environmentally building material.

Research Investigations at the Municipal (2×35) and Clinical (2×5 MW) Waste Incinerators in Sheffield, UK

  • Swithenbank, J.;Nasserzadeh, V.;Ewan, B.C.R.;Delay, I.;Lawrence, D.;Jones, B.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.100-125
    • /
    • 1996
  • After recycle of spent materials has been optimised, there remains a proportion of waste which must be dealt with in the most environmentally friendly manner available. For materials such as municipal waste, clinical waste, toxic waste and special wastes such as tyres, incineration is often the most appropriate technology. The study of incineration must take a process system approach covering the following aspects: ${\bullet}$ Collection and blending of waste, ${\bullet}$ The two stage combustion process, ${\bullet}$ Quenching, scrubbing and polishing of the flue gases, ${\bullet}$ Dispersion of the flue gases and disposal of any solid or liquid effluent. The design of furnaces for the burning of a bed of material is being hampered by lack of an accurate mathematical model of the process and some semi-empirical correlations have to be used at present. The prediction of the incinerator gas phase flow is in a more advanced stage of development using computational fluid dynamics (CFD) analysis, although further validation data is still required. Unfortunately, it is not possible to scale down many aspects of waste incineration and tests on full scale incinerators are essencial. Thanks to a close relationship between SUWIC and Sheffield Heat&Power Ltd., an extended research programme has been carried out ar the Bernard Road Incinerator plant in Sheffield. This plant consists of two Municipal(35 MW) and two Clinical (5MW) Waste Incinerators which provide district heating for a large part of city. The heat is distributed as hot water to commercial, domestic ( >5000 dwelling) and industrial buildings through 30km of 14" pipes plus a smaller pipe distribution system. To improve the economics, a 6 MW generator is now being added to the system.

  • PDF