• Title/Summary/Keyword: bearing system

Search Result 2,226, Processing Time 0.034 seconds

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Effects of Schroth exercise therapy on curvature and body appearance of patients with lumbar idiopathic scoliosis

  • Lee, Hyung-Joo;Lee, Suk-Min
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.4
    • /
    • pp.230-237
    • /
    • 2020
  • Objective: To investigate the physical appearance and therapeutic changes that occur with the performance of Schroth exercise in patients with scoliosis. Design: Randomized controlled trial. Methods: Fifteen subjects with maximum curvature of the lumbar who were diagnosed with idiopathic scoliosis had volunteered to participate in the study. Eight subjects were included in the experimental group where they performed the Schroth Therapeutic Exercise and the other seven were included in the control group. The experimental group underwent 2 hours of weekly treatment for 12 weeks, while the control group did not during the same period based on the decisions of patients or guardians. The Mann-Whitney rank test was carried out to compare the treatment results of the two groups, and the comparison within the group was done by Wilcoxon signed-rank test. The vertebral rotation angle (VRA) was by Scoliometer, and difference of rotated and curved portion volume (DV) between both sides on the major curvature portion measured by 3D human body scanning system. Results: In the experimental group, 12 weeks of Schroth exercise therapy has significant improved in correction rate (CR) in Cobb's angle (CA), VRA, and DV between both sides on the major curvature portion (p<0.05), while significant differences were not found between the groups regarding weight bearing difference in both feet (WD) and DV (p<0.05). Conclusions: Schroth exercise performance showed significant changes in the patient's therapeutic changes (CA, VRA), but the physical appearance (DV, WD) was not significant, indicating that external changes in the treatment goal setting are more difficult goals to achieve.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

Acute Effects of Dynamic Stretching and Self-Mobilization of the Ankle Joint on Dorsiflexion Range of Motion, Muscle Strength, and Balance in Healthy Adults

  • Kim, Kyoung-Han;Choi, Yun-Seo;Jeon, Jeongwoo;Hong, Jihoen;Yu, Jaeho;Kim, Jinseop;Kim, Seong-Gil;Lee, Dongyeop
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.63-72
    • /
    • 2022
  • Purpose : Several studies have investigated the effects of dynamic stretching (DS) and self-mobilization (SM), however, studies comparing the two interventions are rare. Therefore, the purpose of this study was to compare the effects of DS and SM on ankle strength, dorsiflexion range of motion (DFROM), and balance to determine which is superior. Methods : Thirty-two healthy young adults participated in this study. Participants were randomly assigned to two groups (SM and DS). DS was performed for the purpose of stretching the medial gastrocnemius muscle. For the SM group, ankle joint SM was performed in three ways. For all participants, the following measurements were performed as pre- and post-tests: isometric strength of dorsiflexor and plantar flexor, weight-bearing lunge test (WBLT) to evaluate DFROM, Tetrax system to evaluate static balance, and y balance test (YBT) to evaluate dynamic balance. Differences before and after the intervention within each group were compared using paired t-test. Also, the variable's variation was compared between groups using an independent t-test. Results : Significant differences were found in ankle dorsiflexor strength, WBLT, YBT, weight distribution index (WDI) (pillow and opened eyes; PO), and stability index (ST) (normal and closed eyes; NC) before and after intervention in the SM group (p<.05). In the DS group, significant differences were found in ankle dorsiflexor and plantar flexor strength, WBLT, YBT anterior, WDI (normal and opened eyes; NO, PO), and ST (NO, NC, PO, pillow and closed eyes) before and after the intervention (p<.05). Ankle plantar flexor strength and WDI (PO) were significantly different between groups. Conclusion : Based on the results of this study, DS or SM can be considered as a possibility for selective use according to variables for improving ankle joint function (DFROM, muscle strength, balance).

The new criterion on performance-based design and application to recent earthquake codes

  • Azer A. Kasimzade;Emin Nematli;Mehmet Kuruoglu
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2023
  • "Performance-based design (PBD)" is based on designing a structure with choosing a performance target under design criteria to increase the structure's resistance against earthquake effect. The plastic hinge formation is determined as one of the fundamental data in finite elements nonlinear analysis to distinguish the condition of the structure where more significant potential damage could occur. If the number of plastic hinges in the structure is increased, the total horizontal load capability of the structure is increased, also. Theoretically, when the number of plastic hinges of the plane frame structure reaches "the degree of hyperstaticity plus one", the structure will reach the capability of the largest ultimate horizontal load. As the number of plastic hinges to be formed in the structure increases towards the theoretical plastic hinge number (TPHN), the total horizontal load capability of the structure increases, proportionally. In the previous studies of the authors, the features of examining the new performance criteria were revealed and it was formulated as follows "Increase the total number of plastic hinges to be formed in the structure to the number of theoretical plastic hinges as much as possible and keep the structure below its targeted performance with related codes". With this new performance criterion, it has been shown that the total lateral load capability of the building is higher than the total lateral load capability obtained with the traditional PBD method by the FEMA 440 and FEMA 356 design guides. In this study, PBD analysis results of structures with frame carrier systems are presented in the light of the Turkey Building Earthquake Code 2019. As a result of this study, it has been shown that the load capability of the structure in the examples of structures with frame carrier system increases by using this new performance criterion presented, compared to the results of the examination with the traditional PBD method in TBEC 2019.

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.

Wiener filtering-based ambient noise reduction technique for improved acoustic target detection of directional frequency analysis and recording sonobuoy (Directional frequency analysis and recording 소노부이의 표적 탐지 성능 향상을 위한 위너필터링 기반 주변 소음 제거 기법)

  • Hong, Jungpyo;Bae, Inyeong;Seok, Jongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • As an effective weapon system for anti-submarine warfare, DIrectional Frequency Analysis and Recording (DIFAR) sonobuoy detects underwater targets via beamforming with three channels composed of an omni-direcitonal and two directional channels. However, ambient noise degrades the detection performance of DIFAR sonobouy in specific direction (0°, 90°, 180°, 270°). Thus, an ambient noise redcution technique is proposed for performance improvement of acoustic target detection of DIFAR sonobuoy. The proposed method is based on OTA (Order Truncate Average), which is widely used in sonar signal processing area, for ambient noise estimation and Wiener filtering, which is widely used in speech signal processing area, for noise reduction. For evaluation, we compare mean square errors of target bearing estmation results of conventional and proposed methods and we confirmed that the proposed method is effective under 0 dB signal-to-noise ratio.

Particle Analysis of Uranium Bearing Materials Using Ultra High-resolution Isotope Microscope System (초고분해능 동위원소현미경 시스템을 활용한 우라늄 핵종 입자 분석 기술)

  • Jeongmin Kim;Yuyoung Lee;Jung Youn Choi;Haneol Lee;Hyunju Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.557-564
    • /
    • 2023
  • Nuclear materials such as uranium are used as fuel for nuclear power generation, but there is a high possibility that they will be used for non-peaceful purposes, so international inspections and regulations are being conducted. Isotope analysis data of fine particulate obtained from nuclear facilities can provide important information on the origin and concentration method of nuclear material, so it is widely used in the field of nuclear safety and nuclear forensics. In this study we describe the analytical method that can directly identify nuclear particles and measure their isotopic ratios for fine samples using a large-geometry secondary ion mass spectrometer and introduce its preliminary results. Using the U-200 standard material, the location of fine particles was identified and the results consistent with the standard value were obtained through microbeam analysis.

Critical Adjuvant Influences on Preventive Anti-Metastasis Vaccine Using a Structural Epitope Derived from Membrane Type Protease PRSS14

  • Ki Yeon Kim;Eun Hye Cho;Minsang Yoon;Moon Gyo Kim
    • IMMUNE NETWORK
    • /
    • v.20 no.4
    • /
    • pp.33.1-33.19
    • /
    • 2020
  • We tested how adjuvants effect in a cancer vaccine model using an epitope derived from an autoactivation loop of membrane-type protease serine protease 14 (PRSS14; loop metavaccine) in mouse mammary tumor virus (MMTV)-polyoma middle tumor-antigen (PyMT) system and in 2 other orthotopic mouse systems. Earlier, we reported that loop metavaccine effectively prevented progression and metastasis regardless of adjuvant types and TH types of hosts in tail-vein injection systems. However, the loop metavaccine with Freund's complete adjuvant (CFA) reduced cancer progression and metastasis while that with alum, to our surprise, were adversely affected in 3 tumor bearing mouse models. The amounts of loop peptide specific antibodies inversely correlated with tumor burden and metastasis, meanwhile both TH1 and TH2 isotypes were present regardless of host type and adjuvant. Tumor infiltrating myeloid cells such as eosinophil, monocyte, and neutrophil were asymmetrically distributed among 2 adjuvant groups with loop metavaccine. Systemic expression profiling using the lymph nodes of the differentially immunized MMTV-PyMT mouse revealed that adjuvant types, as well as loop metavaccine can change the immune signatures. Specifically, loop metavaccine itself induces TH2 and TH17 responses but reduces TH1 and Treg responses regardless of adjuvant type, whereas CFA but not alum increased follicular TH response. Among the myeloid signatures, eosinophil was most distinct between CFA and alum. Survival analysis of breast cancer patients showed that eosinophil chemokines can be useful prognostic factors in PRSS14 positive patients. Based on these observations, we concluded that multiple immune parameters are to be considered when applying a vaccine strategy to cancer patients.

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF