• Title/Summary/Keyword: bearing strength

Search Result 994, Processing Time 0.029 seconds

Eccentric performance of CFST columns jacketed with steel tube and sandwiched concrete

  • Weijie Li;Yiyan Lu;Yue Huang;Shan Li
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.89-102
    • /
    • 2023
  • This study investigates the eccentric performance of concrete-filled steel tubular (CFST) stub columns strengthened with steel tube and sandwiched concrete (STSC) jackets. It was revealed that the STSC jacketing method effectively weakened the cracking of concrete in CFST columns on the convex side and the crash on the concave side. Substantial increases in the eccentric bearing capacities were demonstrated after strengthening. A numerical study was further conducted. The decrease in diameter-to-thickness ratio and increase in strength of outer tube contributed to increase in peak load of all components, whereas the increase in sandwiched concrete strength resulted in load increase on itself and had negligible effects on other components. The parametric study showed the effect of inner concrete strength on columns' bearing capacity was magnified after strengthening, whereas that of inner tube thickness was reduced. Within the parameters investigated, high-strength concrete and high-strength steel can be applied without the concern of early abrupt failure of inner low-strength concrete or steel tube.

Preliminary Analysis of Stabilization of Forest Road Surface Using Geosynthetics (토목섬유를 이용한 임도 노면의 안정성 예비 분석)

  • Lee, Kwan-Hee;Oh, Se-Wook;Ko, Chi-Ung;Kim, Dong-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.51-60
    • /
    • 2015
  • This study conducted shear strength test and plate bearing test to look into the characteristics of bearing capacity using geosynthetics case on forest road surface. The shear strength test showed that the internal friction angle at the time when geosynthetics was used was measured larger on average than that in the unreinforced case. Therefore, using geosynthetics case produced more bearing capacity reinforcement effect. The result from the comparison test of internal friction angle by geosynthetics type revealed that the internal friction angle at the time when geotextile case was used was measured larger. That was attributable to the difference between the area of the total cross section of geotextile made in type of non-woven fabric and its material. Plate bearing test showed that the settlement at the time when geosynthetics was used was measured smaller than that in the unreinforced case. Therefore, using geosynthetics produced more bearing power reinforcement effect. The result from the comparison test showed that geogrid case was measured smaller than geotextile case. Henceforth, It is seemed that it will be necessary to keep studying the reinforcement engineering and process of forest road surface which fits the characteristics and conditions of geosynthetics to prevent forest road demage.

Bearing Capacity Evaluation of Marine Clay Dredged Deposit Including Desiccated Crust Layer (건조 고결층이 형성된 준설 매립 지반의 지지력 산정에 대한 연구)

  • Park, Hyun-Ku;Byeon, Wi-Yong;Jee, Sung-Hyun;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.89-100
    • /
    • 2007
  • In this study, various field and laboratory tests were performed to investigate the characteristics of shear strength and bearing behavior to be considered in the estimation of stability and trafficability in early stage of stabilization process in marine clay dredged deposit. Site characterization was carried out to grasp the basic properties of the deposit. Field vane test, unconfined compression test and direct shear test were conducted to evaluate the shear strength distribution for varied depths, and the characteristics of shear strength and stress-strain behavior of the crust layer. Plate load tests were also performed to estimate the bearing capacity and to assess load-settlement behavior and failure pattern of the deposit. The bearing capacity was also estimated using previously proposed methods for double-layered clay deposit. The estimated bearing capacity was compared with the results of the plate load tests and then, the applicability of the estimation method was discussed.

Study on Bearing Capacity of Ultra High Strengh End Extended PHC Pile by Loading Test (재하시험을 통한 초고강도 선단확장 PHC말뚝의 적용성 연구)

  • Hwang, Ui-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.269-275
    • /
    • 2019
  • As the national industry is developing gradually due to the expansion of the economic scale, the construction of large and super high-rise structures for building social infrastructure has been increasing, and studies have been conducted actively to transmit the large loads at the upper portion to the lower bedrock. In this study, the PHC was extended to an ultra-high strength PHC, which increased the concrete compressive strength of the PHC from the conventional 80 MPa to 110 MPa, and the PHC, which extended the tip of the pile. After construction with the driving method and injected pile method, the tendency of the bearing capacity was tested through a load test. Measurements of the bearing capacity of the extended PHC using the pile driving method revealed the main surface friction force to be smaller than that of the general PHC, and the stet-up effect was also insignificant. On the other hand, the effect of the friction force on the ground surface when the injected pile method was applied is expected to increase the bearing capacity when the gap between the main surface and the ground is wide and the cement paste is filled tightly. In addition, the ultrahigh strength PHC showed higher bearing capacity than the conventional PHC, and the permissible pile stress was less than 60%. Therefore, it is possible to reduce the number of piles and reduce the construction cost and effect of shortening the length of the pile by designing the tip of the pile on the ground with the intensity of soft rock as a method for utilizing the increased strength of the ultra-high strength PHC.

A Study of the Ageing Treatment on the mechanical properties and microstructure of Cu-bearing HSLA steels (Cu를 함유한 HSLA강의 기계적 성질 및 미세 조직에 미치는 시효처리의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Proceedings of the KWS Conference
    • /
    • 1994.05a
    • /
    • pp.39-43
    • /
    • 1994
  • The effects of ageing treatment on the mechanical properties of two Cu-bearing HSLA(High Strength Low Alloy) steels, HSLA-A and HSLA-B ,were studied by means of SEM, TEM, tensile, charpy impact and hardness tests. These steels showed excellent combination in strength and toughness at an ageing of $650^{\circ}C$ by the precipitation of $\varepsilon$-Cu and low carbon alloying. The peak strength was achieved at an ageing of 50$0^{\circ}C$ in both steels, while the impact energy was very low in this peak strength. With ageing temperature above this temperature, strength was decreased whereas impact energy increased. A marked increase in hardness above 675$^{\circ}C$ was associated with the formation of “M-A constituents” which forms during cooling from austenite-ferrite two phase region. The impact transition temperature of HSLA-A and HSLA-B steels were -l$25^{\circ}C$ and -145$^{\circ}C$, respectively.

  • PDF

Bearing Strength of Steel Coupling Beams-Wall Connections depending upon Joint Details (접합부 상세에 따른 철골 커플링 보-벽체 접합부의 지압강도)

  • Park Wan-Shin;Yun Hyun-Do;Han Byung-Chan;Hwang Sun-Kyung;Yang Il-Seong;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.113-116
    • /
    • 2004
  • No specific guidelines are for computing the shear strength of steel coupling beam connections embedded in the reinforced concrete shear wall. In this paper, a theoretical study of the strength of hybrid coupled shear wall connections is achieved. The bearing stress at failure in the concrete below the steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the steel coupling beam section to the thickness of the hybrid coupled shear wall. To revise factor affecting shear transfer strength across connections between coupled shear walls and steel coupling beam, experimental studies are achieved. The main test variables were auxiliary details of stud bolts. In this studies, these proposed equations are shown to be in good agreement with the test results reported in the paper and with other test data in the literature.

  • PDF

High strength's union of mass layers metal bearing (고강성 다층 메탈베어링의 접합)

  • 전재억;황영모;김수광;계중읍;김준안;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.792-795
    • /
    • 2004
  • Despite is product that ship, vehicles, development equipment and Metal Bearing for plant equipment that is mass-produced by present domestic companies Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation is accomplishing master and servant and this is foreseen to be used widely on industry whole in hereafter but Cast White Metal Bearing need minuteness processing, while price competitive power is depending on income from superior another thing area than itself manufacture already in advanced nation to lowdown that the technique is generalized widely, when take into account technology change aspect of industrial technology developing country, Go added value creation by deepening of price competition is judged to be difficult hereafter. Because domestic production and supply are wholly lacking almost in Metal Bearing Cladding that take advantage of these technology, Data-base about connection technology is weak with technique and Know-How for product. This research unites Back Steel and Aluminium Alloy different kind metal and make the Clad river studying technology about union of Gogangseong Dacheung metal bearing hereupon.

  • PDF

Stochastic design charts for bearing capacity of strip footings

  • Shahin, Mohamed A.;Cheung, Eric M.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.153-167
    • /
    • 2011
  • Traditional design methods of bearing capacity of shallow foundations are deterministic in the sense that they do not explicitly consider the inherent uncertainty associated with the factors affecting bearing capacity. To account for such uncertainty, available deterministic methods rather employ a fixed global factor of safety that may lead to inappropriate bearing capacity predictions. An alternative stochastic approach is essential to provide a more rational estimation of bearing capacity. In this paper, the likely distribution of predicted bearing capacity of strip footings subjected to vertical loads is obtained using a stochastic approach based on the Monte Carlo simulation. The approach accounts for the uncertainty associated with the soil shear strength parameters: cohesion, c, and friction angle, ${\phi}$, and the cross correlation between c and ${\phi}$. A set of stochastic design charts that assure target reliability levels of 90% and 95%, are developed for routine use by practitioners. The charts negate the need for a factor of safety and provide a more reliable indication of what the actual bearing capacity might be.

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

Effects of Tempering Treatment on Microstructure and Mechanical Properties of Cu-Bearing High-Strength Steels (템퍼링에 따른 Cu 첨가 고강도강의 미세조직과 기계적 특성)

  • Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.550-555
    • /
    • 2014
  • The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from $350^{\circ}C$ to $650^{\circ}C$ for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at $350^{\circ}C$; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at $550^{\circ}C$, the yield strength reached 1.2 GPa and the absorbed energy at $-20^{\circ}C$ showed a level above 200 J, which was the best combination of high strength and good toughness.