• Title/Summary/Keyword: bearing stiffness

Search Result 915, Processing Time 0.03 seconds

Dynamic Characteristics of HDD Slider by Perturbed Finite Element Method (교란 유한요소법을 이용한 하드 디스크 슬라이더의 동특성 해석)

  • Hwang Pyung;Khan Polina V.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.143-148
    • /
    • 2004
  • The numerical analysis of the hard disk drive slider is presented. The pressure distribution was calculated using the finite element method. The generalized Reynolds equation was applied in order to include the gas rarefaction effect. The balance of the air bearing force and preload force was considered. The characteristics of the small vibrations near the equilibrium were studied using the perturbation method. Triangular mesh with variable element size was employed to model the two-rail slider. The flying height, pitching angle, rolling angle, stiffness and damping of the two-rail slider were calculated for radial position changing from the inner radius to the outer radius and for a wide range of the slider crown values. It was found that the flying height, pitching angle and rolling angle were increased with radial position while the stiffness and damping coefficients were decreased. The higher values of crown resulted in increased flying height, pitching angle and damping and decreased stiffness.

  • PDF

A study on the whirling vibration measurement (횡 진동 측정에 관한 연구)

  • Sun, Jin-Suk;Oh, Joo-Won;Kim, Yong-Cheol;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering the range of MCR, however, the range is un-measurable. To resolve the measurement issue, this study shows the measuring method and the estimating method of whiling vibration by using resonance frequency of sub harmonic.

  • PDF

FEM Analysis of alternatively laminated structure constructed of rubber and reinforced aluminium layers (고무 알루미늄 적층 구조물의 유한요소 해석)

  • Park, Sung-Han;Lee, Bang-Up;Hong, Myung-Pyo;Ryu, Back-Reung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.402-406
    • /
    • 2000
  • Strain energy function of the isoprene rubber was accurately determined by the experiments of uniaxial tension, planar tension, biaxial tension and volumetric compression. Deformation behavior of alternatively laminated structure of elastomer and reinforced aluminium layers, was analysed by Finite Element method. As a result, Ogden strain energy function obtained from the experiments describes the hyperelastic characteristics of the rubber very well. The compressibility of the rubber reduces axial stiffness of the structure. The axial stiffness of alternatively laminated structure being larger than shear stiffness. Which enables the structure to be shear-deformed easily.

  • PDF

시일의 마멸로 인한 다단터빈펌프의 위험속도 변화

  • Kim, Yeong-Cheol;Lee, Dong-Hwan;Lee, Bong-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.203-209
    • /
    • 1998
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on Its system behavior. Stiffness and damping coefficients of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annular seals are calculated as functions of rotating speed as well as seal clearance. As the clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in nitration amplitude by resonance shift and reduce seal damping capability.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF

Effects of Soil Conditions on the Vibratory Motion of Drilled Shaft (지반조건이 현장 타설 말뚝 선단부의 동적 경계조건에 미치는 영향)

  • 이병식;이원구
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.159-166
    • /
    • 2000
  • Non-destructive out-hole tests, impact-echo and impact-response are widely applied to evaluate integrity of drilled shafts. In these tests, vibratory motions of drilled shafts are interpreted, which induced by impacts on the shaft head. In applying the tests to evaluating integrity of shaft, it has been attended whether the tests have resolutions enough to distinguish existence of slime at between the shaft end and a bearing soil deposit. To distinguish existence of slime by tests, modes of shaft vibrations need to be reasonably interpreted, which generally vary according to a shaft boundary condition such as, a free-free or a free-fixed condition. The boundary condition of a shaft is, however, found to be significantly affected by stiffness of soil deposits around shaft as well as penetration depths of shaft into a bearing soil deposit. Thus, these effects on the boundary condition of a shaft should be considered reasonably in interpreting test results to decide the existence of slime. To investigate the effects, in this study, vibratory motions of shafts constructed in various soil conditions and end penetration depths are examined analytically. Based on the studies, variations of boundary condition are characterized in terms of soil stiffness contrast between a shaft perimeter and a shaft end, and also the ratio of a penetration depth to a shaft length. The results can be applied to verify the applicability of tests to identify the slime.

  • PDF

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.