• Title/Summary/Keyword: bearing stiffness

Search Result 913, Processing Time 0.033 seconds

Stability Analysis of High-speed Driveshafts under the Variation of the Support Conditions (초고속 구동축의 지지 조건에 따른 안정성 분석)

  • Shin, Eung-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • This paper is to investigate the effects of the asymmetrical support stiffness on the stability of a supercritical driveshaft with asymmetrical shaft stiffness and anisotropic bearings. The equations of motion is derived for a system including a rigid disk, a massless flexible asymmetric shaft, anisotropic bearings and a support beam. The Floquet theory is applied to perform the stability analysis with the variation of the support stiffness, the shaft asymmetry, the shaft damping and the shaft speed. The results show that the asymmetric support stiffness is closely related to the stability caused by primary resonance as well as the supercritical operation. First, the stiffness variation can stabilize the system around primary resonance by weakening the parametric resonance from the shaft asymmetry. Second, it also improve the stability characteristics at a supercritical operation when the support stiffness is not so high relative to the shaft stiffness.

Bearing and Rotordynamic Performance Analysis of a 250 kW Reduction Gear System (250 kW급 초임계 CO2 발전용 감속기의 유체 윤활 베어링 및 회전체 동역학 특성 해석)

  • Lee, Donghyun;Kim, Byungok
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.107-112
    • /
    • 2016
  • This paper presents a rotordynamic analysis of the reduction gear system applied to the 250 kW super critical CO2 cycle. The reduction gear system consists of an input shaft, intermediate shaft, and output shaft. Because of the high rotating speed of the input shaft, we install tilting pad bearings, rolloer bearings support the intermediate and output shafts. To predict the tilting pad bearing performance, we calculate the applied loads to the tilting pad bearings by considering the reaction forces from the gear. In the rotordynamic analysis, gear mesh stiffness results in a coupling effect between the lateral and torsional vibrations. The predicted Campbell diagram shows that there is not a critical speed lower than the rated speed of 30,000 rpm of the input shaft. The predicted modes on the critical speeds are the combined bending modes of the intermediate and output shaft, and the lateral vibrations dominate when compared to the torsional vibrations. The damped natural frequency does not strongly depend on the rotating speeds, owing to the relatively low rotating speed of the intermediate and output shaft and constant stiffness of the roller bearing. In addition, the logarithmic decrements of all the modes are positive; therefore all modes are stable.

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Axial behavior of RC column strengthened with SM-CFST

  • Jiang, Haibo;Li, Jiahang;Cheng, Quan;Xiao, Jie;Chen, Zhenkan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.773-784
    • /
    • 2022
  • This paper aims to investigate the axial compressive behavior of reinforced concrete (RC) columns strengthened with self-compacting and micro-expanding (SM) concrete-filled steel tubes (SM-CFSTs). Nine specimens were tested in total under the local axial compression. The test parameters included steel tube thickness, filling concrete strength, filling concrete type and initial axial preloading. The test results demonstrated that the initial stiffness, ultimate bearing capacity and ductility of original RC columns were improved after being strengthened by SM-CFSTs. The ultimate bearing capacity of the SM-CFST strengthened RC columns was significantly enhanced with the increase of steel tube thickness. The initial stiffness and ultimate bearing capacity of the SM-CFST strengthened RC columns were slightly enhanced with the increase of filling concrete strength. However, the effect of filling concrete type and initial axial preloading of the SM-CFST strengthened RC columns were negligible. Three equations for predicting the ultimate bearing capacity of the SM-CFST strengthened RC columns were compared, and the modified equation based on Chinese code (GB 50936-2014) was more precise.

The behaviour of a strip footing resting on geosynthetics-reinforced slopes

  • Hamed Yazdani;Mehdi Ashtiani
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.623-636
    • /
    • 2023
  • This study utilized small-scale physical model tests to investigate the impact of different types of geosynthetics, including geocell, planar geotextile, and wraparound geotextile, on the behaviour of strip footings placed on 0.8 m thick soil fills and backfills with a slope angle of 70°. Bearing capacity and settlement of the footing and failure mechanisms are discussed and evaluated. The results revealed that the bearing capacity of footings situated on both unreinforced and reinforced slopes increased with a greater embedment depth of the footing. For settlement ratios below 4%, the geocell reinforcement exhibited significantly higher stiffness, carrying greater loads and experiencing less settlement compared to the planar and wraparound geotextile reinforcements. However, the performance of geocell reinforcement was influenced by the number and length of the geocell layers. Increasing the geocell back length ratio from 0.44 to 0.84 significantly improved the bearing capacity of the footing located at the crest of the reinforced slope. Adequate reinforcement length, particularly for geocell, enhanced the bearing pressure of the footing and increased the stiffness of the slope, resulting in reduced deflections. Increasing the length of reinforcement also led to improved performance of the footing located on wraparound geotextile reinforced slopes. In all reinforcement cases, reducing the vertical spacing between reinforcement layers from 100 mm to 75 mm allowed the slope to withstand much greater loads.

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.

A study on the Effects of the Bearing Parameters on the Main Spindle Design of Machine Tool (공작기계 주축설계에 영향을 미치는 베어링 파라미터에 관한 연구)

  • Yeo, Eun Gu;Kim, Yeop Rae;Han, Gang Geun;Park, Myeon Ung;Yu, Heon Il;Lee, Yong Sin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.119-119
    • /
    • 1998
  • The purpose of this study is to investigate the effects of operation factors of a typical main spindle system on the efficiency of machine tool. In this study. both static and dynamic analysis of typical main spindle system of the machine tool are performed using a finite element method. These finite element results are then used to predict the bearing stiffness. the amount of heat generation as well as the bearing life in the spindle system. Effects of material type of ball-bearing. bearing-lubricant type and main spindle bearing preload are examined.

Design of a Step Motor with a Passive Magnetic Bearing (수동형 마그네틱 베어링이 결합된 스텝 모터의 설계)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1201-1207
    • /
    • 2006
  • This paper introduces a step motor with a passively levitated rotor which comprises a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the active magnetic bearing technology, the proposed motor has a very simple structure and operating principle. For the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. Halbach array is used to increase the bearing stiffness. On the other hand, its rotation principle is just the same with that of conventional motors. In this paper, we introduce the design scheme to avoid the flux interference possibly produced by electromagnets and permanent magnets, and show some results of FEM analysis to predict the performance of the proposed motor.