• Title/Summary/Keyword: bearing steel

Search Result 1,015, Processing Time 0.022 seconds

Bearing Capacity of Model Open -Ended Steel Pipe Pile Driven into Sand Deposit (모래지반에 타입된 모형 개단강관 말뚝의 지지력 분석)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Model tests in calibration chamber with open -ended steel pipe pile have been performed in sand deposit to clarify effect of soil plug on bearing capacity, load transfer mechanisms in soil plug, and behavior of soil plug under dynamic and static conditions. Model piles were devised so that bearing capacity of open -ended pile could be measured separately into outside skin friction, inside skin friction due to soil plug -pile interaction and end bearing force on the section of steel pipe pile. It may be concluded, form the test results, that the plugging level of open -ended pile is more correctily defined by specific recovery ratio, y, rather than by plug length ratio, PLR, and the major part of inside skin friction is generated within the range of three times as long as the inner diameter of the pile from the pile tip. The ratio of inside skin friction to total bearing capacity is much larger than that of outside skin friction to total bearing capacity. Therefore, the bearing capacity of pile could not be well predicted, unless the inside skin friction is properly taken into account.

  • PDF

Composite action of concrete-filled double circular steel tubular stub columns

  • Wang, Liping;Cao, Xing-xing;Ding, Fa-xing;Luo, Liang;Sun, Yi;Liu, Xue-mei;Su, Hui-lin
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.77-90
    • /
    • 2018
  • This paper presents a combined numerical, experimental, and theoretical study on the behavior of the concrete-filled double circular steel tubular (CFDT) stub columns under axial compressive loading. Four groups of stub column specimens were tested in this study to find out the effects of the concrete strength, steel ratio and diameter ratio on the mechanical behavior of CFDT stub columns. Nonlinear finite element (FE) models were also established to study the stresses of different components in the CFDT stub columns. The change of axial and transverse stresses in the internal and external steel tubes, as well as the change of axial stress in the concrete sandwich and concrete core, respectively, was thoroughly investigated for different CFDT stub columns with the same steel ratio. The influence of inner-to-outer diameter ratio and steel ratio on the ultimate bearing capacity of CFDT stub columns was identified, and a reasonable section configuration with proper inner-to-outer diameter ratio and steel ratio was proposed. Furthermore, a practical formula for predicting the ultimate bearing capacity was proposed based on the ultimate equilibrium principle. The predicted results showed satisfactory agreement with both experimental and numerical results, indicating that the proposed formula is applicable for design purposes.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Tensile Strength of Plate with Bolt Hole and Bearing Strength of Bolted Connection by Oxygen Torch Cut (볼트홀을 산소토치로 천공한 강재의 인장강도 및 지압이음강도)

  • Park, Yong Myung;Lee, Kun Joon;Kim, Dong Hyun;Ju, Ho Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.617-626
    • /
    • 2014
  • In this paper, experiments for the evaluation of tensile strength of steel plate with bolt hole and bearing strength of bolted connection were performed, where bolt holes were punched by drilling and oxygen torch, respectively. For the tensile tests, drilled and oxygen torch punched steel plate specimens of 10mm and 15mm thickness were made from structural angles and H-shapes, respectively. For the bearing strength evaluation, test specimens were fabricated with base plates and splice plates those were also punched by drilling and oxygen torch, respectively. The Vicker's hardness were measured around the bolt hole to investigate material property change due to heat effect by oxygen torch cut. Numerical analysis was also performed to investigate the bearing strength of bolted joints due to the increase of hardness around the bolt hole by oxygen torch cut.

An Estimation of Bearing Capacity and Driveability of Steel Sheet Pile Installed by Vibratory Hammer (진동해머에 의해 설치되는 강널말뚝의 지지력 및 항타관입성 평가)

  • Lee, Seung-Hyun;Yune, Chan-Young;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.339-347
    • /
    • 2007
  • Penetration tests were performed for two types of steel sheet piles which were driven in clay deposit and sand deposit. Penetration velocity data acquired from penetration tests were used in order to estimate bearing capacity and vibro-driveability of steel sheet piles. Bearing capacity values predicted from Davisson method and Bombard method were greater than that calculated from static bearing capacity formula by 11.9 times and 1.6 times respectively. Vibro-driveability predictions from $T\ddot{u}nkers$ method and ${\beta}$ method show correspondence to field test result fur sand deposit but not for clay deposit. From motor powers estimated by Savinov and Luskin method it can be seen that larger capacities of motor powers are required for clay deposit and adequate hammer was used for sand deposit.

  • PDF

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Behavior of steel-concrete jacketed corrosion-damaged RC columns subjected to eccentric load

  • Hu, Jiyue;Liang, Hongjun;Lu, Yiyan
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.689-701
    • /
    • 2018
  • Corrosion of steel reinforcement is a principal cause of deterioration of RC columns. Making these corrosion-damaged columns conform to new safety regulations and functions is a tremendous technological challenge. This study presented an experimental investigation on steel-concrete jacketed corrosion-damaged RC columns. The influences of steel jacket thickness and concrete strength on the enhancement performance of the strengthened specimens were investigated. The results showed that the use of steel-concrete jacketing is efficient since the stub strengthened columns behaved in a more ductile manner. Moreover, the ultimate strength of the corrosion-damaged RC columns is increased by an average of 5.3 times, and the ductility is also significantly improved by the strengthening method. The bearing capacity of the strengthening columns increases with the steel tube thickness increasing, and the strengthening concrete strength has a positive impact on both bearing capacity, whereas a negative influence on the ductility. Subsequently, a numerical model was developed to predict the behavior of the retrofitted columns. The model takes into account corrosion-damage of steel rebar and confining enhancement supplied by the steel tube. Comparative results with the experimental results indicated that the developed numerical model is an effective simulation. Based on extensive verified numerical studies, a design equation was proposed and found to predict well the ultimate eccentric strength of the strengthened columns.