• Title/Summary/Keyword: bearing performance

Search Result 1,374, Processing Time 0.032 seconds

Measurements and Predictions of Rotodynamic Performance of a Motor-Driven Small Turbocompressor Supported on Oil-Free Foil Bearings (무급유 포일 베어링으로 지지되는 소형 전동 압축기의 회전체동역학 성능 측정 및 예측)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho;Lee, Jong Sung;Kim, Tae Young
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.53-62
    • /
    • 2022
  • This study presents experimental measurements of the rotordynamic performance of a motor-driven small turbocompressor supported by gas beam foil journal bearings (GBFJBs) and compares the test results with the predictions of a computational model. The experiments confirmed that the rotational synchronous frequency component dominates the behavior of the overall rotor vibrations, whereas the nonsynchronous components are insignificant, indicating the rotor-bearing system remains stable up to 100 krpm. The undamped natural frequency and imbalanced response of the rotor-bearing system are predicted when integrating the finite element model of the rotor-bearing system with the predictions of the bearing dynamic coefficients. The results are in good agreement with the experimental results. In addition, base excitation test results show that the small turbocompressor can endure large external forces and demonstrate limited rotor amplitudes. A simple single degreeof-freedom rotor model using the nonlinear stiffness of the GBFJBs can effectively predict the test results.

Torque Prediction of Ball Bearings Considering Cages using Computational Fluid Dynamics (전산유체역학을 이용한 케이지가 고려된 볼 베어링의 토크 예측)

  • Jungsoo Park;Jeongsik Kim;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Ball bearings are a major component of mechanical parts for transmitting rotation. Compared to tapered roller bearings, ball bearings offer less rolling resistance, which leads to reduced heat generation during operation. Because of these characteristics, ball bearings are widely used in electric vehicles and machine tools. The design of ball bearing cages has recently emerged as a major issue in ball bearing design. Cage design requires pre-verification of performance using theoretical or experimental formula or computational fluid dynamics (CFD). However, CFD analysis is time-consuming, making it difficult to apply in case studies for design decisions and is mainly used in performance prediction following design confirmation. To use CFD in the early stages of design, main-taining analytical accuracy while reducing the time required for analysis are necessary. Accordingly, this study proposes a laminar steady-state segment CFD technique to solve the problem of long CFD analytical times and to enable the use of CFD analysis in the early stages of design. To verify the reliability of the CFD analysis, a bearing drag torque test is performed, and the results are compared with the analytical results. The proposed laminar steady-state segment CFD technique is expected to be useful for case studies in bearing design, including cage design.

Experimental Evaluation of Seismic Performance of Laminated Elastomeric Bearing and Lead-Rubber Bearing (적층고무베어링과 납-고무베어링의 내진 성능에 관한 실험적 평가)

  • 김대곤;이상훈;김대영;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.53-62
    • /
    • 1998
  • Experimental studies for the laminated elastomeric bearing and the lead-rubber bearing, those are often used to improve the seismic capacity of the structures recently, are conducted to evaluate the seismic capacity of the bearings. The shear stiffness of the bearings decreases as the shear strain amplitude or the constant axial load level increases, but not sensitive to the strain rates effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

A Study on Indicial Response Characteristics of a Gas-Lubricated Spiral-Grooved proceeding Bearing

  • Yabe, H.;Kaneshiro, T.;Hirayama, T.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.101-102
    • /
    • 2002
  • Indicial response characteristics of a rotor supported by a gas-lubricated, spiral-grooved proceeding bearing are studied theoretically to develop a fundamental investigation for the bearing design with considering NRRO characteristics. The trajectory of rotor movement is calculated by applying the non-linear orbit scheme against a prescribed impulse load, then two characteristic quantities are introduced to evaluate the indicial response performance of the bearing, i.e., 'maximum deviation of rotor center' and 'integrated rotor center deviation'. The effects of some design parameters of spiral grooves to these representative quantities are studied so that 'robust' design against impulse load is discussed.

  • PDF

A Study on the Optimization for Application of Elastomeric Bearing for Railway Bridge (탄성받침의 철도교량 적용을 위한 최적화에 관한 연구)

  • Kim, Hyo-Won;Kim, Hak-Goon;Son, Kyong-Wook;Choi, Dong-Chul;Yoon, Soon-Jong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.815-820
    • /
    • 2011
  • The railway bridge of the domestic still has been used steel base such as sperical bearing and pot bearing widely. However, the bearing of steel series is occured corrosion frequently, reduced durability and raised maintenance cost excessively due to the nature of the material. If the elastomeric bearing which is widely used in highway bridge is applied to the railway bridge, it will be able to compensate this defect a lot. In order to apply to the railway bridge used for highway bridge, is needed the control of the bridge ends deflection, lateral displacement and negative reaction. Therefore, the elastomeric bearing can be applied to the railway bridge enough, if installed negative reaction key for control of the bridge ends deflection, improved shear wedge performance for control of the lateral force, adjust the thickness of the elastomeric pad for the minimize deflection, in addition, can be economic design of sub-structures due to damping effect.

  • PDF

Stochastic Model of the Bearing Estimator Using Cross-Correlation Method (상호상관관계를 이용한 방위탐지기의 확률적 모델)

  • 박상배;류존하;이균경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.23-33
    • /
    • 1994
  • In this paper, we propose a probabilistic model appropriate for the bearing estimator which uses cross-correlation method following a close investigation on real underwater acoustic bearing data. The well-known JPDA(Joint Probabilistic Data Association) filter is tuned to the underwater acoustic bearing estimation based on the result that the reliability of the bearing measurement is related to the amplitude of the cross-correlation peak. The proposed probabilistic model is shown to be adequate by presenting the results of the improved tracking performance of the modified filter for various real bearing data as well as artificially generated ones.

  • PDF

The influence of fluid inertia and heat dissipation in fluid films (유체막에서 관성과 열 소산의 영향)

  • Kim, Eun-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.224-234
    • /
    • 1997
  • It was demonstrated earlier that for laminar, isothermal flow of the lubricant in long journal bearings, inertia has negligible effect on the load carrying capacity and influences only the stability characteristics of the bearing. The question in the present paper is: 'will these conclusions of the isothermal theory remain valid in the presence of significant dissipation, or will lubricant inertia and dissipation interact non-linearly to bring about qualitative changes in bearing performance\ulcorner' The results obtained here assert that the effect of lubricant inertia on load carrying capacity remains negligible, irrespective of the rate of dissipation. The stability of the bearing is, however, affected by lubricant inertia. These results, although obtained here for long bearings with Sommerfeld and Gumbel boundary conditions, are believed to be applicable to practical bearing operations and affirm that bearing load may be calculated from classical, i. e., non-inertial theory.

축방향 하중을 받는 앵귤러 콘택트 볼베오링의 수명특성에 관한 실험적 연구

  • Hwang, Pyung;Kwon, Sung-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.53-59
    • /
    • 1996
  • The new trends in main spindle design of Machining Center are focused on high-speed, high-precision and high-stiffness. As a main spindle bearing, the angular-contact ball bearing is well used. A rolling bearing is usually only a small part of a larger mechanical system, but its performance can have a great influence on the functioning of the whole machine. This work is about fatigue life tester design and monitoring of defected rolling-element bearings. The major work is done via experiments and the vibration signal is analysised by means of frequency spectrum technique. By analyzing the frequency spectrum, it is possible to view the condition of the bearings.

  • PDF

Nonlinear frequency Response Analysis of Hydrodynamic Journal Bearing Under External Disturbance (외란을 받는 저널 베어링의 비선형 주파수 응답 해석)

  • 노병후;김경웅
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.68-76
    • /
    • 1999
  • This paper presents the nonlinear characteristics of the oil lubricated hydrodynamic journal bearing. The traditional approach is to characterize the behavior and performance of fluid film hydrodynamic journal bearings by means of linearized bearing analysis. The objective of this paper is to examine the nonlinear characteristics of the journal bearing when an external sinusoidal shock is given to the system. The oil film force is obtained by solving the finite width Reynolds equation at each time step by the solution of the column method. Frequency response function and journal orbit obtained from both linear and nonlinear bearing simulations are compared with each other.

A Study on Select Bearing Position of High Speed Spindle Considering the Thermo Behavior (주축의 열변위를 고려한 초고속 스핀들의 베어링 위치 선정)

  • Park, Su-Seong;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.767-772
    • /
    • 2011
  • The thermal deformation of machine tool spindle influences the performance of the manufacturing systems for precision products. According to previous studies, major factors that will affect the stiffness of the spindle include spindle diameter, elasticity of the material, bearing stiffness and bearing span. It is difficult to change spindle diameter or elasticity of the material. but change of bearing position is easy in the given range compared to other factors. In this paper, we will find a solution to minimize thermal deformation through Change the span of the bearing.