• Title/Summary/Keyword: bearing failure

Search Result 805, Processing Time 0.038 seconds

Evaluation of Bearing Capacity of Multi-layered Soil Deposits (개별요소법에 의한 다층지반의 지지력 산정)

  • Park Jun;Jee Sung-Hyun;Lee Seung-Rae;Park Hyun-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.63-69
    • /
    • 2006
  • In this paper, a method is presented for estimating the bearing capacity of shallow foundations based on the Discrete Element Method (DEM). By applying Winkler-springs for accounting for the compatibility between soil blocks, the proposed method can estimate the state of stress at failure surface and the ultimate bearing capacity. For the investigation of the application of the method, example problems about shallow foundations on the single layer and two layers soil are analyzed.

An Experimental Study on the Effects of Bolted Connection Type on the Block Shear Failure (볼트이음방식의 블록전단파괴에 미치는 영향에 대한 실험적 연구)

  • Lee, Chin-Ok;Park, Gyung-Hyeon;Moon, Jiho;Lee, Hak-Eun;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5566-5571
    • /
    • 2012
  • Block shear failure is one of limit states, and demands great caution in designing the tension member or connection joint of steel structures. From many studies and design specification, it is shown that the effect of the bolted connection type on the block shear failure was not considered. In order to investigate the effect of the bolted connection type(bearing type connection and slip critical connection) on the mode/strength of the block shear failure, tensile experiment is conducted in this study. Differences about the failure mode according to the design specification, bearing type connection, and slip critical connection are proposed from the analysis of test results. The variation of the block shear failure strength due to the frictional force in the slip critical connection is also investigated.

Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine

  • Chen, Lu;Zhou, Zilong;Zang, Chuanwei;Zeng, Ling;Zhao, Yuan
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.449-457
    • /
    • 2019
  • Physical model tests were first performed to investigate the failure pattern of multiple pillar-roof support system. It was observed in the physical model tests, pillars were design with the same mechanical parameters in model #1, cracking occurred simultaneously in panel pillars and the roof above barrier pillars. When pillars 2 to 5 lost bearing capacity, collapse of the roof supported by those pillars occurred. Physical model #2 was design with a relatively weaker pillar (pillar 3) among six pillars. It was found that the whole pillar-roof system was divided into two independent systems by a roof crack, and two pillars collapse and roof subsidence events occurred during the loading process, the first failure event was induced by the pillars failure, and the second was caused by the roof crack. Then, for a multiple pillar-roof support system, three types of failure patterns were analysed based on the condition of pillar and roof. It can be concluded that any failure of a bearing component would cause a subsidence event. However, the barrier pillar could bear the transferred load during the stress redistribution process, mitigating the propagation of collapse or cutting the roof to insulate the collapse area. Importantly, some effective methods were suggested to decrease the risk of catastrophic collapse, and the deep-hole-blasting was employed to improve the stability of the pillar and roof support system in a room and pillar mine.

A Study on Bearing Diagnosis of Induction Motor using Torque Signature (유도 전동기의 토크신호를 이용한 베어링 고장진단 연구)

  • Hong, Young-Hee;Seon, Hyun-Gyu;Park, Jin-Yeub
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.638_639
    • /
    • 2009
  • The motors faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. This paper presents a study and the practical implementation of an induction motor for reactor containment fan cooler in nuclear power plant with Electric Signature Analysis(ESA). The results obtained present a good degree of reliability hence; the ESA predictive maintenance tools enable a pro-active evaluation of induction motors performance prior to failure.

  • PDF

Application of Envelop Analysis and Wavelet Transform for Detection of Gear Failure (기어 결함 검출을 위한 포락처리와 웨이블릿 변환의 적용)

  • Gu, Dong-Sik;Lee, Jeong-Hwan;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.905-910
    • /
    • 2008
  • Vibration analysis is widely used in machinery diagnosis and the wavelet transform has also been implemented in many applications in the condition monitoring of machinery. In contrast to previous applications, this paper examines whether acoustic signal can be used effectively along vibration signal to detect the various local fault, in local fault of gearboxes using the wavelet transform. Moreover, envelop analysis is well known as useful tool for the detection of rolling element bearing fault. In this paper, a acoustic emission (AE) sensor is employed to detect gearbox damage by installing them around bearing housing at driven-end side. Signal processing is conducted by wavelet transform and enveloping to detect her fault all at once gearbox using AE signal.

A Numerical Method for Strength Analysis of Composite Joints (복합재 체결부 강도해석을 위한 새로운 수치해석방법)

  • Kang BongSoo;Jung JaeWoo;Kweon Jin-Hwe;Choi Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.202-205
    • /
    • 2004
  • A numerical method is presented to determine the characteristic lengths for the failure analysis of composite joints without characteristic length tests. In the conventional methods, compressive characteristic length was determined from the result of a combined bearing test and finite element analysis. The present study, however, shows that the same compressive characteristic length can be obtained by numerical calculation without the bearing test. A new method to define the tensile characteristic length is also introduced so that the tensile characteristic length is numerically determined without the tensile test. Failure loads based on the numerically calculated characteristic lengths are validated by the test results for composite joints

  • PDF

Pseudotumor and Subsequent Implant Loosening as a Complication of Revision Total Hip Arthroplasty with Ceramic-on-Metal Bearing: A Case Report

  • Naik, Lokesh Gudda;Shon, Won Yong;Clarke, I.C.;Moon, Jun-Gyu;Mukund, Piyush;Kim, Sang-Min
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2018
  • Pseudotumors are not uncommon complications after total hip arthroplasty (THA) and may occur due to differences in bearing surfaces of the head and the liner ranging from soft to hard articulation. The most common causes of pseudotumors are foreign-body reaction, hypersensitivity and wear debris. The spectrum of pseudotumor presentation following THA varies greatly-from completely asymptomatic to clear implant failure. We report a case of pseudo-tumor formation with acetabular cup aseptic loosening after revision ceramic-on-metal hip arthroplasty. The patient described herein underwent pseudotumor excision and re-revision complex arthroplasty using a trabecular metal shell and buttress with ceramic-on-polyethylene THA. Surgeons should be aware of the possibility of a pseudotumor when dealing with revisions to help prevent rapid progression of cup loosening and implant failure, and should intervene early to avoid complex arthroplasty procedures.

Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.273-286
    • /
    • 2018
  • In recent years, significant progress has been made in developing design rules for stainless steel members, while the investigation on bolted connections is relatively limited, in particular at elevated temperatures. In this paper, experimental and numerical investigations on stainless steel bolted connections at ambient and elevated temperatures from the literature were reviewed. Firstly, the research program that focused on structural behavior of cold-formed stainless steel (CFSS) bolted connections at elevated temperatures carried out by the authors were summarized. Over 400 CFSS single shear and double shear bolted connection specimens were tested. The tests were conducted in the temperature ranged from 22 to $950^{\circ}C$ using both steady state and transient state test methods. It is shown that the connection strengths decrease as the temperature increases in the similar manner for the steady state test results and the transient state test results. Generally, the deterioration of the connection strengths showed a similar tendency of reduction to those of the material properties for the same type of stainless steel regardless of different connection types and different configurations. It is also found that the austenitic stainless steel EN 1.4571 generally has better resistance than the stainless steel EN 1.4301 and EN 1.4162 for bolted connections at elevated temperatures. Secondly, extensive parametric studies that included 450 specimens were performed using the verified finite element models. Based on both the experimental and numerical results, bearing factors are proposed for bearing resistances of CFSS single shear and double shear bolted connections that subjected to bearing failure in the temperature ranged from 22 to $950^{\circ}C$. The bearing resistances of bolted connections obtained from the tests and numerical analyses were compared with the nominal strengths calculated from the current international stainless steel specifications, and also compared with the predicted strengths calculated using the proposed design equations. It is shown that the proposed design equations are generally more accurate and reliable than the current design rules in predicting the bearing resistances of CFSS (EN 1.4301, EN 1.4571 and EN 1.4162) bolted connections at elevated temperatures. Lastly, the proposed design rules were further assessed by the available 58 results of stainless steel bolted connections subjected to bearing failure in the literature. It is found that the proposed design rules are also applicable to the bearing resistance design of other stainless steel grades, including austenitic stainless steel (EN 1.4306), ferritic stainless steel (EN 1.4016) and duplex stainless steel (EN 1.4462).

Application of ALE for detection of rolling ball bearing defects in noisy environment (잡음환경에서 구름 볼 베어링의 결함검출을 위한 ALE의 적용)

  • 김영태;최만용;김기복;박해원;박정학;김종억;류준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.86-91
    • /
    • 2004
  • It is very important to detect the bearing defects in rotating machinery since the critical failure of bearing cause a machinery shutdown. However it is difficult to detect the vibration signal resulting from the initial defects of bearing because of the high level of broadband noise. A signal processing technique, called the adaptive line enhancer(ALE) as one of adaptive filter, is studied in this work. This technique is to eliminate broadband noise without a prior knowledge of the noise and signal characteristics. Also we propose the optimal methods for selecting the three main ALE parameters such as correlation length, filter order and adaptation constant used in the adaptative process. Vibration signals for three abnormal bearings, including inner and outer raceways and ball defects, were acquired from Anderon(angular derivative of radius on)meter. The experimental results showed that the proposed technique can reliably detect the bearing defective signals masked by broadband noise.

  • PDF

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.