• 제목/요약/키워드: bearing damage

검색결과 400건 처리시간 0.024초

대각보강된 철근콘크리트 연결보의 변위비 기반 취약도 함수 개발 (Drift Ratio-based Fragility Functions for Diagonally Reinforced Concrete Coupling Beams)

  • 이창석;한상환;고혜영
    • 한국지진공학회논문집
    • /
    • 제23권2호
    • /
    • pp.131-140
    • /
    • 2019
  • Diagonally reinforced concrete coupling beams (DRCBs) have been widely adopted in reinforced concrete (RC) bearing wall systems. DRCBs are known to act as a fuse element dissipating most of seismic energies imparted to the bearing wall systems during earthquakes. Despite such importance of DRCBs, the damage estimation of such components and the corresponding consequences within the knowledge of performance based seismic design framework is not well understood. In this paper, drift-based fragility functions are developed for in-plane loaded DRCBs. Fragility functions are developed to predict the damage and to decide the repair method required for DRCBs subjected to earthquake loading. Thirty-seven experimental results are collected from seventeen published literatures for this effort. Drift-based fragility functions are developed for four damage states of DRCBs subjected to cyclic and monotonic loading associated with minor cracking, severe cracking, onset of strength loss, and significant strength loss. Damage states are defined in a consistent manner. Cumulative distribution functions are fit to the empirical data and evaluated using standard statistical methods.

볼 베어링의 마멸 상태에 따른 진동 특성의 변화 (Vibration Characteristics According to Wear Progress of Ball Bearings)

  • 조상경;박정우;조연상
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.141-147
    • /
    • 2017
  • The vibration data of bearings are very useful for monitoring and determining the condition of the bearings. The defect frequencies of ball bearings have been used for monitoring there condition. However, it is not easy to verify the defect frequencies as the wear progress. Therefore there is a need for an easy method to monitor the damages of bearings in real-time and to observe the variations in vibration characteristics as the wear progress. In this study, a bearing test equipment is constructed to diagnose the damage of bearings. The friction coefficient and vibration data are measured by using a torque sensor and an acceleration sensor, and the correlation between the measured data is analyzed to diagnose the condition of the bearing. We reached the following conclusions from the results. When the ball surface, inner and outer rings of a ball bearing are damaged, the friction coefficient increases to over 0.02 with an adhesion on the surface. Moreover this damage occurs more quickly with an increase in the number of revolutions. In the vibration characteristics, the amplitude of vibration wave appears high with an increase in the friction coefficient. In the high frequency range between 1000 and 2000 Hz, a wide range of frequency components with high amplitude occurs continuously irrespective of the number of revolutions.

스트레인 게이지를 이용한 선박용 추진 축계의 베어링 반력 측정에 관한 연구 (A Study on the Measurement and Analysis of Bearing Reaction Forces of Marine Propulsion Shafting System using Strain-Gauge)

  • 김철우;이용진;조권회;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 2008
  • Bearing damages by shaft misalignment have frequently been happened in marine ships. Specially. after stern tube bearing damage and failure for large crude oil carriers have been reported several times. However. the bearing reaction of the after stern tube bearing cannot be measured by jack-up test due to the hull structure condition. Therefore, when the jack-up test is used for the bearing reaction measurements, the bearing reaction for the after stern tube bearing obtained from the theoretical calculation method have to be used. In this paper, the shaft alignment on the large oil crude carrier is theoretically calculated and the differences between the calculated and actual installed bearing reaction values are compared. The bearing reactions for forward stern tube bearing and intermediate bearing are calculated by the simple formula using the strain gauge bending moments obtained from the measurements. Their reliability is confirmed by comparing the bearing reactions from jack-up test and the bearing reaction for after stern tube bearing is calculated by the same test. Also, the bearing reactions on the after stern tube bearing, forward stern tube bearing and intermediate shaft bearing under all operating conditions are calculated by using the bending moments obtained from the measurements and it is confirmed that the differences of the bearing reaction for all operating conditions are caused from hull deflection. The results of this study should prove useful for the future projects of the alignment calculation including the hull deflection effectiveness.

예압 변경을 통한 틸팅패드 저널베어링의 패드 Fluttering 방지에 관한 연구 (Study on the Prevention of Pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing)

  • 박철현;김재실;하현천;양승헌
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.344-351
    • /
    • 2004
  • Tilling pad journal bearings have been widely used to support the rotors of the high rotating machinery such as steam and gas turbines owing to their inherent dynamic stability characteristics. However, serious bearing problems such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc. by pad fluttering are frequently taken place in the actual steam turbines. The purpose of this paper is to investigate the mechanism of pad fluttering and to suggest the useful design guideline(application of preload, m) for the purpose of preventing bearing problems by pad fluttering in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of the upper pad is diverged by moment acting on pivot point. This paper suggests that effective preload range(m $\geq$ 0.5) in order to be statically loaded pad under all operating conditions. Also, design modified bearing is suggested for the adjustment in actual steam turbines. And bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

상부패드의 형상 변경을 통한 'Anti-fluttering 틸팅패드 저널베어링' 개발 (Development of Anti-fluttering Tilting Pad Journal Bearing with the Shape Modification of Upper Pad)

  • 양승헌;나운학;박희주;김재실
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.796-805
    • /
    • 2005
  • The tilting pad journal bearings have been widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unloaded pads and the break of locking pins etc. by pad fluttering are continuously taken place in the actual steam turbines. The purpose of this paper is to develop a new bearing model that can prevent bearing problems effectively by pad fluttering in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of fluttering mechanism performed by previously research works. The fluttering characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad fluttering nearly does not occurred in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad fluttering does not detect in the application of acture steam turbines.

  • PDF

상부패드의 형상 변경을 통한 'Anti-fluttering 틸팅패드 저널베어링' 개발 (Development of Anti-fluttering Tilting Pad Journal Bearing with the Shape Modification of Upper Pad)

  • 양승헌;나운학;박희주;김재실
    • 한국유체기계학회 논문집
    • /
    • 제8권5호
    • /
    • pp.35-45
    • /
    • 2005
  • The tilting pad journal bearings have been widely used to support high pressure/high rotating turbine rotors owing to their inherent dynamic stability characteristics. However, fatigue damages in the upper unloaded pads and the break of locking pins etc. by pad fluttering are continuously taken place in the actual steam turbines. The purpose of this paper is to develop a new bearing model that can prevent bearing problems effectively by pad fluttering in a tilting pad journal bearing. A new bearing model which has a wedged groove is suggested from the studies of fluttering mechanism performed by previously research works. The fluttering characteristics of the upper unloaded pad are studied experimentally in order to verify the reliability of a new bearing model. It can be known that the phenomenon of pad fluttering nearly does not occurred in the new bearing model under the various experimental conditions. And it is observed that any kinds of bearing failures by pad fluttering does not detect in the application of acture steam turbines.

틸팅패드 저널베어링의 패드 fluttering 메커니즘 및 예압 변경을 통한 패드 fluttering 방지에 관한 연구 (Study on the Mechanism of pad Fluttering and the Prevention of pad Fluttering with the Variation of Preload in a Tilting Pad Journal Bearing)

  • 박철현;김재실;하현천;양승헌
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.291-297
    • /
    • 2003
  • Fluid film tilting pad journal bearings are widely used for large steam turbines. However, bearing problems by pad fluttering, such as fatigue damage in the upper unloaded pad, the break of locking pins and the wear of pinholes etc., are frequently taken place in the actual steam turbines. The purpose of the present work is to investigate on the mechanism of pad fluttering and the prevention of pad fluttering with the variation of preload(m) in a tilting pad journal bearing. It is estimated that upper pad is easy to flutter because the film shape of upper pad is diverged one from the analysis of moment direction acting on pivot point. Effective preload range in order to be statically loaded pad under all operating conditions is suggested as m>0.5. Also, as a bearing that can be prevented pad fluttering, design modified bearing is suggested. For the adjustment in actual steam turbines, bearing and rotor dynamic analysis are performed to identify bearing characteristics and to verify the reliability of rotor-bearing system.

  • PDF

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

Base Isolation System이 있는 건물의 지진하중에 대한 동적해석 (Semismic Analysis of Building Structures with Base Isolation System)

  • 이동근;이정석
    • 전산구조공학
    • /
    • 제3권1호
    • /
    • pp.71-81
    • /
    • 1990
  • Base isolation system은 구조물의 기초하부에 설치되며 지진에 의한 구조물의 피해를 감소시켜 준다. 지금까지 많은 공학들에 의해 여러가지 base isolation system이 개발되었으나 실용화된 것은 1970년대에 laminated rubber bearing(LR type)이 개발되고서부터 였다. 최근에는 laminated rubber bearing밑에 미끄럼판을 둔 새로운 base isolation system(SR type)이 개발되었다. 본 연구에서는 isolation system과 구조물의 여러가지 성질에 따른 isolation효과에 대한 연구를 수행하였다. 이 연구의 결과, isolaion system은 지진하중이 작용할 때 건물에 발생하는 피해를 상당히 감소시킴을 알 수 있으며, isolaion system의 주기가 길어짐에 따라 isolation효과는 증가함을 알 수 있다. 그리고 건물의 높이가 증가함에 따라 isolation효과는 줄어든다는 것을 알 수 있다. SR type isolation system이 있는 건물에 지진하중이 작용할 때, 건물내부에서 발생하는 가속도와 층간변위, 그리고 전체변위는 LR type의 경우보다 작으므로 보다 효율적이라는 것을 알 수 있다.

  • PDF

경험적 모드 분해법과 인공 신경 회로망을 적용한 베어링 상태 분류 기법 (A Development on the Fault Prognosis of Bearing with Empirical Mode Decomposition and Artificial Neural Network)

  • 박병희;이창우
    • 한국정밀공학회지
    • /
    • 제33권12호
    • /
    • pp.985-992
    • /
    • 2016
  • Bearings have various uses in industrial equipment. The lifetime of bearings is often lesser than anticipated at the time of purchase, due to environmental wear, processing, and machining errors. Bearing conditions are important, since defects and damage can lead to significant issues in production processes. In this study, we developed a method to diagnose faults in the bearing conditions. The faults were determined using kurtosis, average, and standard deviation. An intrinsic mode function for the data from the selected axis was extracted using empirical mode decomposition. The intrinsic mode function was obtained based on the frequency, and the learning data of ANN (Artificial Neural Network) was concluded, following which the normal and fault conditions of the bearing were classified.