• 제목/요약/키워드: bearing area

검색결과 788건 처리시간 0.023초

납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구 (An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio)

  • 최정호;김운학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.217-224
    • /
    • 2009
  • 지진으로부터 구조물의 안전을 확보하기 위하여 많은 공학자들의 연구가 계속되고 있다. 본 연구에서는 납의 이력특성을 이용하여 지진하중을 감소시키는 LRB(lead rubber bearing)의 감쇠능력에 대한 실험적 연구를 수행하였다. 납 플러그의 면적비를 주요변수로 설계한 2종류 12개의 시험체를 제작하여 변위제어시험을 시행하였다. 감쇠비 결정을 위한 이력감쇠곡선을 얻기 위하여 2개의 시험체가 한 쌍을 이루도록 배치하고 3회 반복이력시험을 수행하였다. 실험결과로부터 본 연구에서의 납 플러그 면적비가 큰 LRB는 지진시 구조물의 지진하중을 감소시키는데 충분한 감쇠비를 보유하고 있음을 알 수 있었다.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

면적치환비가 작은 샌드파일 설치지반에서의 복합지반효과 (Composite Ground Effects on Small Area Replacement Ratio of Sand Piles)

  • 천병식;여유현
    • 한국지반환경공학회 논문집
    • /
    • 제2권3호
    • /
    • pp.57-69
    • /
    • 2001
  • 샌드파일 공법은 연약지반 개량을 위해 널리 사용되는 방법중의 하나이다. 샌드파일 설치에 의해 얻고자 하는 주된 목적은 압밀촉진에 있으나 이와 더불어 복합지반효과를 지니게 된다. 본 연구에서는 상대적으로 면적 치환비가 작은 연직배수재로서 적용된 샌드파일 설치지반에서의 복합지반효과를 파악하고자 하였다. 이를 위하여 원지반과 샌드파일의 지내력 확인을 위한 평판재하시험을 실시하였으며, 성토체와 지반과의 상호거동을 확인하기 위하여 토압계를 설치하여 계측관리를 실시하였다. 분석결과 면적치환비가 작은 샌드파일 설치지반에서 복합지반을 고려한 지지력은 원지반의 지지력과 비교하여 매우 작은 증가효과를 보였다. 그러나 원지반과 비교한 샌드파일 설치위치에서의 지지력 증가는 약 60% 로 나타났다. 이와 같이 샌드파일의 강성증대에 의한 파일설치 위치에서의 지지력 증대는 재하하중 작용에 의한 압밀진행 과정중 압밀특성 변화의 요인으로 작용하게 될 것이다. 따라서 샌드파일 강성증대에 따른 복합지반효과는 샌드파일 설치지반에서 압밀침하량이 감소하는 요인으로 평가될 수 있는 것으로 판단된다.

  • PDF

Research on bearing characteristics of socket-spigot template supporting system

  • Guo, Yan;Hu, Chang-Ming;Lian, Ming
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.869-887
    • /
    • 2016
  • The socket-spigot template supporting system is widely used in engineering applications in China. As a newer type of support structure, there has been growing research interest in its bearing capacity. In this paper, four vertical bearing capacity tests were carried out on the basic mechanical unit frame of a socket-spigot template supporting system. The first goal was to explore the influence of the node semi-rigid degree and the longitudinal spacing of the upright tube on the vertical bearing capacity. The second objective was to analyze the displacement trend and the failure mode during the loading process. This paper presents numerical analysis of the vertical bearing capacity of the unit frames using the finite element software ANSYS. It revealed the relationship between the node semi-rigid degree and the vertical bearing capacity, that the two-linear reinforcement model of elastic-plastic material can be used to analyze the socket-spigot template supporting system, and, through node entity model analysis, that the load transfer direction greatly influences the node bearing area. Finally, this paper indicates the results of on-site application performance experiments, shows that the supporting system has adequate bearing capacity and stability, and comments on the common work performance of a socket and fastener scaffold.

공동현상을 고려한 소형 정밀 모터용 빗살무늬 저널베어링의 해석 (Analysis of a Hydrodynamic Herringbone-Grooved Journal Bearing in a Small Precision Motor Considering Cavitation)

  • 창동일;장건희
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2680-2687
    • /
    • 2000
  • The Reynolds equation, incorporating Elrods cavitation algorithm, is discretized on a rectangular grid in computational space through coordinate mapping in order to accurately analyze a herringbone grooved journal bearing of a spindle motor in a computer hard disk drive. The pressure distribution and cavitation area are determined by using the finite volume method. Predicted results are compared to experimental data of previous researchers. It was found that positive pressure is developed within the converging section of the bearing and that a cavity occurs in the diverging section. Cavitation has been neglected in the previous analysis of the herringbone grooved bearing. Load capacity and bearing torque are increased due to the increased of eccentricity and L/D and the decrease of the grooved width ratio. The maximum load capacity was found to occur at a groove angle of 30 degrees while bearing torque remains constant due to the variation of the groove angle. The cavitation region is significantly decreased with the inclusion of herringbone grooves. However, the region increases with the increase of the eccentricity, L/D, groove angle and the rotational speed and the decrease of the grooved width ratio.

표면 거칠기가 나노 응착력에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Surface Roughness on Nanoscale Adhesion)

  • 양승호
    • Tribology and Lubricants
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Effect of Surface roughness on nanoscale adhesion was studied experimentally by using colloidal probe technique. Glass micro balls having the radius of $3.3\~17.4{\mu}m$ were glued at the end of AFM cantilevers to prepare colloidal probes. Adhesion force between the colloidal probe and Si-wafer was measured using pull-off force measuring method. Results showed that the measured adhesion forces are not the function of the radius of the glued balls because the ball surfaces are rough. It is also found that roughness parameters such as $R_a,\;R_q\;and\;R_{max}$ do not have important role on nanoscale adhesion. In order to find the effect of surface roughness on nanoscale adhesion, the bearing areas were extracted from the measured topography of glued balls. After normalizing the measured adhesion force with the bearing area, it was found that the normalized adhesion force kept constant as function of the radius of glued ball.

센서 특성 및 배치를 고려한 에미터 위치탐지 영역 분석에 관한 연구 (A Study on Analysis of Emitter Geolocation Coverage Area based on the Characteristics and Deployment of Sensors)

  • 양종원;박철순;장원
    • 한국군사과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.99-108
    • /
    • 2006
  • In this paper, we analyzed the characteristics of emitter geolocation coverage area within which the emitter lies with a specified probability based on the LOBs(Line of Bearing) of sensors. Stansfield and MSD algorithms were applied to calculate BPE(Best Point Estimate), EEP(Elliptical Error Probable) and CEP(Circular Error Probable), They used the weighting factors composed of ${\sigma}_{Phi}$ (bearing error), QF(quality factor), $P_{e}$ (probability being inside) to optimize the performance. The characteristics of EEP was investigated in the change of them and those of CEP was analyzed based on the deployment of sensors.

피라미드형 전단연결재의 전단거동 (Shear Behavior of Pyramidal Shear Connectors)

  • 이경동;한상호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.131-137
    • /
    • 2000
  • In order to evaluate the design shear strength of composite slabs with truss-shaped shear connectors(TSC), a series of push-out tests on several types of specimens was carried out. The test results for the two parameters of bearing area and solid angle of the connector were compared to obtain the design shear force of the truss-shaped connectors. The results obtained from this study are as follows: (1) The slip-coefficients of TSC ranges from 0.87 to 3.12(${\times}10^6kgf/cm$). (2) The slip stiffness and the shear strength of TSC with $60.6cm^2$ bearing area are greater than those with $14.6cm^2$. (3) For estimating the allowable shear force of TSC, a design equation that is based on the bearing strength of the connector is suggested. (4) The mean safety factors of the critical force and the ultimate force are 2.38 and 4.62. respectively.

  • PDF

Corrosion Resistance of Cr-Bearing Rebar to Macrocell Corrosion Environment Induced by Localized Carbonation

  • Tae, Sung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.17-22
    • /
    • 2006
  • Artificial cracks were made in the cover concrete of specimens embedding ten types of steel rebars of different Cr contents. The research aims for developing Cr-bearing steel rebars resistant to macrocell corrosion environments induced by cracking in cover concrete. The cracks were subjected to intensive penetration of carbon dioxide (carbonation specimens) to form macrocells. The carbonation specimens were then treated with accelerated corrosion curing, during which current macrocell corrosion density was measured. The corrosion area and loss from corrosion were also measured at the end of 105 cycles of this accelerated curing. The results of the study showed that Cr-bearing steel with Cr content of 5% or more suppressed corrosion in a macrocell corrosion environment induced by the differences in the pH values due to carbonation of cracked parts. Cr-bearing steels with Cr content of 7% or more are proven to possess excellent corrosion resistance.