• Title/Summary/Keyword: beam steel bridge

Search Result 220, Processing Time 0.023 seconds

An Experimental and Analytical Study on the Impact Factors of Two-Span Continuous Plate Girder Bridge Due to Road Surface Roughness and Bump (노면조도와 단차를 고려한 2경간연속 판형교의 충격계수에 관한 실험 및 해석적 연구)

  • Park, Young Suk;Chung, Tae Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.309-321
    • /
    • 1997
  • The prediction of the dynamic response of a bridge resulting from passing vehicles across the span is a significant problem in bridge design. In this paper. the static and dynamic experiments are performed to understand the dynamic behavior of an actual two-span steel plate girder bridge. The road surface roughness of the roadway and bridge deck is directly measured by Intelligent Total Station. Numerical scheme to obtain the dynamic responses of the bridges in consideration of measuring road surface roughness and 3-D vehicle model is also presented. The bridge and vehicle are modeled as 3-D bridge and vehicle model, respectively. The main girder and concrete deck are modeled as beam and shell elements, respectively and rigid link is used for the structure between main girder and concrete deck. Bridge-vehicle interaction equations are derived and the impact factors of the responses for different vehicle speeds are calculated and compared with those predicted by several foreign specifications.

  • PDF

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

Evaluation of Seimic Capacity of Cable-Stayed Bridges Considering Inelastic Behavior of Steel Pylons (강주탑의 비선형거동 특성을 고려한 케이블교량의 지진해석)

  • Bae, Sung-Han;Lee, Kyoung-Chan;Chang, Sung-Pil;Kim, Ick-Hyun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.277-283
    • /
    • 2005
  • Inelastic model of Second Jindo Bridge is investigated to perform nonlinear dynamic analyses with various earthquake ground motions. The modal analysis is performed to obtain dynamic characteristics of the bridge and verify the model. It proves that the model has an appropriate dynamic characteristic and its natural frequency is relatively low. Four ground motions are chosen for time history dynamic analyses; El Centro, Kobe, Taft, and Mexico earthquake. Each ground motion multiplied by specified factors to investigate damages of the structure. The analyses prove that responses of the bridge depend on the duration time and the frequency characteristics of ground motion, not only peak acceleration. Static push-over analysis of steel pylon shows that the dynamic analysis over-estimates the seismic behavior of steel pylon definitely. Nonlinear spring hinge model is suggest to improve the shortage of the inelastic model could not deliberate local buckling damage. According to the time history analysis of nonlinear spring hinge model, it is proved that the inelastic beam element analysis overestimate the seismic capacity of steel pylon unquestionably with a large amount of errors.

  • PDF

Long-term deflection prediction in steel-concrete composite beams

  • Lou, Tiejiong;Wu, Sishun;Karavasilis, Theodore L.;Chen, Bo
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.21-33
    • /
    • 2021
  • This paper aims to improve the current state-of-the-art in long-term deflection prediction in steel-concrete composite beams. The efficiency of a time-dependent finite element model based on linear creep theory is verified with available experimental data. A parametric numerical study is then carried out, which focuses on the effects of concrete creep and/or shrinkage, ultimate shrinkage strain and reinforcing bars in the slab. The study shows that the long-term deformations in composite beams are dominated by concrete shrinkage and that a higher area of reinforcing bars leads to lower long-term deformations and steel stresses. The AISC model appears to overestimate the shrinkage-induced deflection. A modified ACI equation is proposed to quantify time-dependent deflections in composite beams. In particular, a modified reduction factor reflecting the influence of reinforcing bars and a coefficient reflecting the influence of ultimate shrinkage are introduced in the proposed equation. The long-term deflections predicted by this equation and the results of extensive numerical analyses are found to be in good agreement.

Estimation of Remaining Service Life of Steel Highway Bridge under Actual Traffic Load (강교량의 실동피로하에서 잔존수명의 추정)

  • 용환선;정경섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.59-64
    • /
    • 1989
  • On this condition of steel bridge member having a crack, occasionaly it is improssible to measure of stress history and to extract test specimen. Under this situation, tried to estimate remaining service life from statistical data on traffic and existing results of fatigue test without measuring of stress history and fatigue test. The main results are as following (1) Stress history of simple beam estimated from Montecallo simulation method with probabilistic model of traffic can be use to estimate remaining fatigue life instead of measuring of stress history. (2) In such a case measuring of remaining fatigue life at bridge member haying a crack, influences of RMS model and RMC model on fatigue crack growth rate are not differ without difference of applied stress range. (3) Application of cut off method may be overestimate remaining fatigue life.

  • PDF

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Analysis of Steel Bridge by means of Specially Orthotropic Plate Theory (특별직교이방성 판이론을 응용한 강교량의 해석)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams ar H-type. A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The results of application of this method to steel bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffiness on the natural frequency is rigorously investigated. According to numerical examination given in this paper the result by the plate theory is 2.43 times stiffer than of beam theory.

  • PDF

Acceleration Estimation of a Steel Plate Girder Bridge using Multiplexed FBG Sensors (다중화된 광섬유센서를 이용한 강철도교의 가속도 유추)

  • Chung, Won-Seok;Kang, Dong-Hoon;Kim, Hyun-Min
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1067
    • /
    • 2007
  • This study presents an experimental technique to monitor the dynamic behavior of the railway bridge system simultaneously using multiplexed fiber Bragg grating (FBG) sensors. The measuring quantities include stains, curvatures, vertical deflections, and vertical accelerations. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Finally, vertical accelerations are obtained from the numerical differentiation in time domain. In order to verify the proposed method, several conventional electric strain gauges, displacement transducers, and accelerometers are installed at the mid-span of the bridge for comparisons. A test train is passed over the bridge to monitor the dynamic response of the bridge. The monitoring results show that the multiplexed FBG sensing system is able to capture the essential behavior of the test bridge while resolving wiring problem in practice.

  • PDF

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.