• Title/Summary/Keyword: beam shear

Search Result 2,155, Processing Time 0.024 seconds

Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions

  • Touati, Mahmoud;Tounsi, Abdelouahed;Benguediab, Mohamed
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.337-355
    • /
    • 2015
  • In this scientific work, an improved analytical solution for adhesive stresses in a concrete beam bonded with the FRP plate is developed by including the effect of the adherend shear deformations. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The shear stress distribution is supposed to be parabolic across the depth of the adherends in computing the adhesive shear stress and Timoshenko's beam theory is employed in predicting adhesive normal stress to consider the shear deformation. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of adhesive stress distributions.

Characteristics of Dynamic Shear Modulus Mastercurve of Aged or Unaged Asphalt Binders (동전단 마스터곡선을 이용한 아스팔트 바인더의 노화 특성 평가)

  • Yun, Tae Young;Ham, Sang Min;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-94
    • /
    • 2013
  • PURPOSES: To characterize the aging effect on asphalt binder, dynamic shear modulus mastercurve of two typical asphalt binders are developed. METHODS: To develop dynamic shear modulus mastercurve, dynamic shear modulus at high temperature and creep stiffness at low temperature are measured by temperature sweep test and bending beam rheometer test, respectively. RESULTS: It is observed that the aging effect on asphalt binder can be clearly observed from dynamic shear modulus mastercurve and the mastercurve can be utilized to predict behavior of asphalt binder at wide range of temperature. CONCLUSIONS: It is confirmed that SBS 5% modified binder has more desirable mechanical property at low and high temperature as a pavement material comparing to PG64-22 binder and the mastercurve is an effective tool to evaluate the property of asphalt binder.

Prediction of shear capacity of channel shear connectors using the ANFIS model

  • Toghroli, Ali;Mohammadhassani, Mohammad;Suhatril, Meldi;Shariati, Mahdi;Ibrahim, Zainah
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.623-639
    • /
    • 2014
  • Due to recent advancements in the area of Artificial Intelligence (AI) and computational intelligence, the application of these technologies in the construction industry and structural analysis has been made feasible. With the use of the Adaptive-Network-based Fuzzy Inference System (ANFIS) as a modelling tool, this study aims at predicting the shear strength of channel shear connectors in steel concrete composite beam. A total of 1200 experimental data was collected, with the input data being achieved based on the results of the push-out test and the output data being the corresponding shear strength which were recorded at all loading stages. The results derived from the use of ANFIS and the classical linear regressions (LR) were then compared. The outcome shows that the use of ANFIS produces highly accurate, precise and satisfactory results as opposed to the LR.

Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls

  • Cho, Chang-Geun;Ha, Gee-Joo;Kim, Yun-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.211-223
    • /
    • 2008
  • A number of studies have suggested that the use of high ductile and high shear materials, such as Engineered Cementitious Composites (ECC) and High Performance Fiber Reinforced Cementitious Composites (HPFRCC), significantly enhances the shear capacity of structural elements, even with/without shear reinforcements. The present study emphasizes the development of a nonlinear model of shear behaviour of a HPFRCC panel for application to the seismic retrofit of reinforced concrete buildings. To model the shear behaviour of HPFRCC panels, the original Modified Compression Field Theory (MCFT) for conventional reinforced concrete panels has been newly revised for reinforced HPFRCC panels, and is referred to here as the HPFRCC-MCFT model. A series of experiments was conducted to assess the shear behaviour of HPFRCC panels subjected to pure shear, and the proposed shear model has been verified through an experiment involving panel elements under pure shear. The proposed shear model of a HPFRCC panel has been applied to the prediction of seismic retrofitted reinforced concrete buildings with in-filled HPFRCC panels. In retrofitted structures, the in-filled HPFRCC element is regarded as a shear spring element of a low-rise shear wall ignoring the flexural response, and reinforced concrete elements for beam or beam-column member are modelled by a finite plastic hinge zone model. An experimental study of reinforced concrete frames with in-filled HPFRCC panels was also carried out and the analysis model was verified with correlation studies of experimental results.

Experimental Study on the Shear Capacity of Cap-Type Shear Connectors With Constant Intervals (단속배치된 캡 형상의 전단연결재의 전단내력에 관한 실험 연구)

  • Oh, Myoung Ho;Lee, Min Seok;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.121-128
    • /
    • 2018
  • The push-out tests have been conducted on the specimens which consist of the steel beam with U-shape section and the cap-type shear connectors with constant intervals. Existing equations for the evaluation of shear connector strength have been investigated on the basis of test results. The reinforcing bars for longitudinal reinforcement and the penetrative bars for transverse reinforcement didn't have much effect on the shear capacity of the cap-type shear connector. The larger the width of cap-type shear connector was profiled, the greater the shear strength turned. The shear capacities of cap-type shear connectors with constant intervals were evaluated on the basis of push-out test results, and those were possible to be determined with proper safety margin using the Eurocode 4. The slip capacity of cap-type shear connector was shown to exceed the limit value of 6mm for sufficiently ductile behavior.

Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams

  • Bensaid, Ismail;Cheikh, Abdelmadjid;Mangouchi, Ahmed;Kerboua, Bachir
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.13-26
    • /
    • 2017
  • In this work we introduce a higher-order hyperbolic shear deformation model for bending and frees vibration analysis of functionally graded beams. In this theory and by making a further supposition, the axial displacement accounts for a refined hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the beam boundary surfaces, so no need of any shear correction factors (SCFs). The material properties are continuously varied through the beam thickness by the power-law distribution of the volume fraction of the constituents. Based on the present refined hyperbolic shear deformation beam model, the governing equations of motion are obtained from the Hamilton's principle. Analytical solutions for simply-supported beams are developed to solve the problem. To verify the precision and validity of the present theory some numerical results are compared with the existing ones in the literature and a good agreement is showed.

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

A new higher order shear and normal deformation theory for functionally graded beams

  • Meradjah, Mustapha;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.793-809
    • /
    • 2015
  • In this scientific work, constructing of a novel shear deformation beam model including the stretching effect is of concern for flexural and free vibration responses of functionally graded beams. The particularity of this model is that, in addition to considering the transverse shear deformation and the stretching effect, the zero transverse shear stress condition on the beam surface is assured without introducing the shear correction parameter. By employing the Hamilton's principle together with the concept of the neutral axe's position for such beams, the equations of motion are obtained. Some examples are performed to demonstrate the effects of changing gradients, thickness stretching, and thickness to length ratios on the bending and vibration of functionally graded beams.

An Experimental Study on the Shear Connection of Inverted T-shape Composite Beam Encased Web (역T형강 합성보의 전단연결에 관한 실험적 연구)

  • Jeong, Jae-Hun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.131-138
    • /
    • 2001
  • In inverted T-shape composite beam examine the structural behavior by experiment According to arrangement, type of stud connector, type of shear connector, reinforcement by welding of stirrup and a close analysis we came to these conclusion. 1) The compare result of bending strength according to arrange type of stud connector : A1-W(stud connector located web)specimen is exceed than A1-F(stud connector located flange). 2) B1-N(using prominence and depression of the web by shear connector) specimen is decrease than A1-W(using stud bolt by shear connector)specimen in bending strength and B2-N(reinforced by welding the stirrup to lower flange)specimen is similar with A2-W specimen. 3) According to reinforced by welding the stirrup to flange, the stiffness and bending strength of the beams are increase. A-scries stirrup comparatively low effective in the increase of strength by welding the stirrup to flange because enough composite effect show by stud connector, but B-series stirrup is comparatively high effective in shear connector effect because shortage of prominence and depression of the web.

  • PDF