• Title/Summary/Keyword: beam shear

Search Result 2,136, Processing Time 0.027 seconds

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

Prediction of Failure Strength of Reinforced Concrete Deep Beams using Two-dimensional Grid Strut-Tie Model Method (2차원 격자 스트럿-타이 모델 방법에 의한 철근콘크리트 깊은 보의 파괴강도 예측)

  • Yun, Young Mook;Kwon, Sang Hyok;Chae, Hyun Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.605-615
    • /
    • 2016
  • It is difficult to form a rational strut-tie model that represents a true load transfer mechanism of structural concrete with disturbed stressed region(s). To overcome the difficulty and handle numerous load cases with just one strut-tie model, a two-dimensional grid strut-tie model method was proposed previously. However, the validity of the method was not fully examined, although the incorporated basic concepts and new methods regarding the effective strength of concrete strut, load carrying capacity of struts and ties, and geometrical compatibility of grid strut-tie model were explained in detail. In this study, for accurate strength analysis and reliable design of reinforced concrete deep beams, the appropriateness of the two-dimensional grid strut-tie model method is verified. For this, the failure strength of 237 reinforced concrete deep beams, tested to shear failure, is predicted by the two-dimensional grid strut-tie model method, and the results are compared with those obtained by the sectional shear design methods and conventional strut-tie model methods of current design codes.

On the Development of the Generalized Slope Deflection Method for the Analysis and Design of Ship Structures (선체(船體) 구조(構造) 해석(解析) 및 설계(設計)를 위한 일반화(一般化) 경사(傾斜) 처짐법(法) 개발(開發)에 관한 연구(硏究))

  • Chang-Doo Jang;Seung-Soo Na
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.202-213
    • /
    • 1992
  • For the analysis and design of ship structures the generalized slope deflection method(GSDM) taking account of axial elongation effect as well as the bending and shearing deformation is developed. Using the span point concept, the existing slope deflection method is easy to transform the variable section to the equivalent uniform one under the bending moment and the shear force, but it is difficult to analyze the web frame with inclined members because the axial deformation effect is not considered. In the present method, the equilibrium conditions including all force components(i.e. axial force, shear force, bending moment) are formulated at the both ends of the variable section beam, such that the usual space frame stiffness equation which can be solved easily by the matrix method is derived. The accuracy and applicability of the present method is demonstrated by analyzing the ship web frame structures.

  • PDF

Sensitivity Analysis for Unit Module Development of Hybrid tube Structural System (복합 튜브 구조시스템의 단위 모듈 개발에 대한 민감도 해석)

  • Lee, Yeon-Jong;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.167-175
    • /
    • 2018
  • This research deals, The characteristics of mechanics and behavior of the tube structural systems, It has been investigated and considered conventional theory and case models, It has shown the suitability, The best location, And optimal shape of the unit module system, Considered variables materials of stiffness increase and decrease in hybrid tube structural systems this study carried out adapting analysis of statistical concepts. In a concrete way, This study exams the effect of reducing horizontal displacement and the shear lag phenomenon, Also, The purpose of this study is to utilize the basic data on the design and study of future high-rise hybrid structural system using this research. As a result, The framed- tube structural system does not effectively cope with horizontal behavior of high-rise buildings, The results of using varying material tested resistance factors and lateral loads in hybrid tube structural system, When each material is compared Bracing material is identified as a key factor in lateral behavior. In a ratio of material quantity framed-tube structural system, The level of sensitivity affecting the horizontal displacement is greater then the beam's column, In case of braced tube structural system, Braced appeared to be most sensitive in comparison of material quantity ratio in columns and beams.

Seismic response and energy dissipation in partially restrained and fully restrained steel frames: An analytical study

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.459-480
    • /
    • 2001
  • The damage suffered by steel structures during the Northridge (1994) and Kobe (1995) earthquakes indicates that the fully restrained (FR) connections in steel frames did not behave as expected. Consequently, researchers began studying other possibilities, including making the connections more flexible, to reduce the risk of damage from seismic loading. Recent experimental and analytical investigations pointed out that the seismic response of steel frames with partially restrained (PR) connections might be superior to that of similar frames with FR connections since the energy dissipation at PR connections could be significant. This beneficial effect has not yet been fully quantified analytically. Thus, the dissipation of energy at PR connections needs to be considered in analytical evaluations, in addition to the dissipation of energy due to viscous damping and at plastic hinges (if they form). An algorithm is developed and verified by the authors to estimate the nonlinear time-domain dynamic response of steel frames with PR connections. The verified algorithm is then used to quantify the major sources of energy dissipation and their effect on the overall structural response in terms of the maximum base shear and the maximum top displacement. The results indicate that the dissipation of energy at PR connections is comparable to that dissipated by viscous damping and at plastic hinges. In general, the maximum total base shear significantly increases with an increase in the connection stiffness. On the other hand, the maximum top lateral displacement $U_{max}$ does not always increase as the connection stiffness decreases. Energy dissipation is considerably influenced by the stiffness of a connection, defined in terms of the T ratio, i.e., the ratio of the moment the connection would have to carry according to beam line theory (Disque 1964) and the fixed end moment of the girder. A connection with a T ratio of at least 0.9 is considered to be fully restrained. The energy dissipation behavior may be quite different for a frame with FR connections with a T ratio of 1.0 compared to when the T ratio is 0.9. Thus, for nonlinear seismic analysis, a T ratio of at least 0.9 should not be considered to be an FR connection. The study quantitatively confirms the general observations made in experimental results for frames with PR connections. Proper consideration of the PR connection stiffness and other dynamic properties are essential to predict dynamic behavior, no matter how difficult the analysis procedure becomes. Any simplified approach may need to be calibrated using this type of detailed analytical study.

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

Size Effect on Flexural Compressive Strength of Reinforced Concrete Beams (철근콘크리트 보의 휨압축강도에 대한 크기효과)

  • 김민수;김진근;이성태;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.934-941
    • /
    • 2002
  • It is important to consider the effect of member size when estimating the ultimate strength of a concrete flexural member because the strength always decreases with an increase of member size. In this study, the size effect of a reinforced concrete (RC) beam was experimentally investigated. For this purpose, a series of beam specimens subjected to four-point loading were tested. More specifically, three different effective depth (d$\approx$15, 30, and 60 cm) reinforced concrete beams were tested to investigate the size effect. The shear-span to depth ratio (a/d=3) and thickness (20 cm) of the specimens were kept constant where the size effect in out-of-plane direction is not considered. The test results are curve fitted using least square method (LSM) to obtain parameters for the modified size effect law (MSEL). The analysis results show that the flexural compressive strength and the ultimate strain decrease as the specimen size increases. In the future study, since $\beta_1$ value suggested by design code and ultimate strain change with specimen size variation, a more detailed analysis should be performed. Finally, parameters for MSEL are also suggested.

Stiffness Enhancement of Piecewise Integrated Composite Robot Arm using Machine Learning (머신 러닝을 이용한 PIC 로봇 암 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seokwoo;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.303-308
    • /
    • 2022
  • PIC (Piecewise Integrated Composite) is a new concept for designing a composite structure with mosaically assigning various types of stacking sequences in order to improve mechanical properties of laminated composites. Also, machine learning is a sub-category of artificial intelligence, that refers to the process by which computers develop the ability to continuously learn from and make predictions based on data, then make adjustments without further programming. In the present study, the tapered box beam type PIC robot arm for carrying and transferring wide and thin LCD display was designed based on the machine learning in order to increase structural stiffness. Essential training data were collected from the reference elements, which were intentionally designated elements among finite element models, during preliminary FE analysis. Additionally, triaxiality values for each finite element were obtained for judging the dominant external loading type, such as tensile, compressive or shear. Training and evaluating machine learning model were conducted using the training data and loading types of elements were predicted in case the level accuracy was fulfilled. Three types of stacking sequences, which were to be known as robust toward specific loading types, were mosaically assigned to the PIC robot arm. Henceforth, the bending type FE analysis was carried out and its result claimed that the PIC robot arm showed increased stiffness compared to conventional uni-stacking sequence type composite robot arm.

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.