• Title/Summary/Keyword: beam model

Search Result 3,455, Processing Time 0.033 seconds

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS FOR REACTION TO MOLAR UPRIGHTING SPRING (대구치 직립 스프링 적용시 반작용에 관한 삼차원 유한요소법적 연구)

  • Choe, Yoo-Kyung;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.61-74
    • /
    • 1998
  • The Purpose of this study was to investigate the stress distribution and tooth displacement at the initial phase produced by 5 types of molar uprighting springs using finite element method. The three dimensional finite element model of lower dentition, bone and springs was composed of 5083 elements and 2071 nodes. The results were as follows: 1. In case of helical spring and root spring, intrusion of lower canine and first premolar were observed md distal tipping, translation and extrusion of lower second molar were observed. 2. In case of T-loop, modified T-loop and box loop, intrusion and distal translation of lower second premolar were observed, and the largest crown distal tipping and translation of lower second molar were observed in T-loop and the smallest were observed in box loop. 3. In case of T-loop with cinch-bact crown distal tipping and translation of lower second molar were decreased, but extrusion was also decreased. 4. With increase of activation in T-loop, mesial translation and won distal tipping of lower second molar were increased and edentulous space was closing, but distal translation of second premolar was also increased. 5. With increase of tip-back bend in T--loop, distal tipping and translation of lower second molar were increased, but extrusion was also increased more largely.

  • PDF

A Study on the Flexural Minimum Reinforcement for Prevention of Brittle Failure Specified in KCI and EN Codes (유럽과 국내기준에 규정된 취성파괴 방지를 위한 휨 최소철근량 고찰)

  • Park, Sung-Jae;Kang, Tae-Sung;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.211-218
    • /
    • 2014
  • In the design of reinforced rectangular concrete beam structure, the minimum amount of flexural reinforcement is required to avoid brittle failure. KCI code is based on concept of ultimate strength and usually used as a model code. But bridge design code enacted by Ministry of land, transportation and maritime affairs in 2012 is based on concept of limit state and similar to Euro code EN 1992-2. This means that the minimum reinforcement presented in both design codes has different origination and safety margin. When rectangular concrete beams with minimum reinforcement are designed according to EN and KCI codes, the amount of minimum reinforcement specified in EN code is only 76% of that in KCI code. This makes the design engineers to be confused. In this study, flexural tests were conducted on nine beams with the two different minimum reinforcement specified in KCI and EN design codes. In results, the measured ratios of nominal strength to crack strength from the test were about 25% greater than those evaluated from the equations presented in KCI and EN codes. The EN beams having only 76% of the minimum reinforcement for the KCI beams were fractured by rupture of steel reinforcement but in ductile manner. It is confirmed that the minimum reinforcement concrete beams designed according to both codes have enough safety margin in flexural capacity and moreover in ductility.

Fish length dependence of target strength for black rockfish, goldeye rockfish at 70kHz and 120kHz (70kHz 및 120kHz에 있어서 조피볼락, 불볼락에 대한 반사강도의 체장 의존성)

  • Mun, Jae-Ho;Lee, Dae-Jae;Shin, Hyeong-Il;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Black rockfish and goldeye rockfish are commercially important fish species due to the increasing demand in Korea. When estimating the abundance of stocks for these species acoustically, it is of crucial importance to know the target strength(TS) to length dependence. In relation to these needs, TS measurement was conducted on black rockfish and goldeye rockfish in an acrylic salt water tank using 70kHz and 120kHz split beam echo sounders. The TS for these two species under the controlled condition was simultaneously measured with the swimming movement by DVR system and analyzed as a function of fish length(L). The results obtained are summarized as follows: The best fit regression of TS on fish length of black rockfish was TS=19.38 Log(L, cm)-70.46 ($r^2=0.71$) at 70kHz and TS=22.39 Log(L, cm)-70.40 ($r^2=0.64$) at 120kHz and in the standard form TS=20 Log(L, cm)-71.29 ($r^2 = 0.70$) at 70kHz and TS=20 Log(L, cm)-66.88 ($r^2=0.57$) at 120kHz. The best fit regression of TS on fish length of goldeye rockfish was TS=17.10 Log(L, cm)-68.28 ($r^2=0.37$) at 70kHz and TS=24.39 Log(L, cm)-73.74 ($r^2=0.59$) at 120kHz and in the standard form TS=20 Log(L, cm)-72.03 ($r^2=0.32$) at 70kHz and TS=20 Log(L, cm)-67.68 ($r^2=0.64$) at 120kHz. An empirical model for fish TS(dB) averaged over the dorsal aspect of 115 fishes of black rockfish and goldeye rockfish and which spans the fish length(L, m) to wavelength($\lambda$, m) ratio between 8 and 30 was derived : TS=34.12 Log(L)-14.12 Log($\lambda$)-23.83, ($r^2=0.90$).

Characteristic of Local Behavior in Orthotropic Steel Deck Bridge with Open Ribs according to Running Vehicle (주행차량에 따른 개단면 강바닥판 교량의 국부거동 특성)

  • Lee, Sung-Jin;Kyung, Kab-Soo;Park, Jin-Eun;Lee, Hee-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • The orthotropic steel deck bridge made by using relatively thin steel plate, and structural members such as transverse and longitudinal ribs, cross beam, etc. in the bridge are fabricated with complex shape by welding. Therefore, the possibility occurring deformation and defects by welding is very high, and stress states in the welded connection parts are very complex. Also, the fatigue cracks in orthotropic steel deck bridge are happening fromthe welded connection parts of secondary member than main member. However, stress evaluation for main members is mainly carried out in the design process of the bridge, detailed stress evaluation and characteristic analysis is not almost reviewed in the structural details which fatigue crack occurred. For the orthotropic steel deck bridge with open ribs which has been serviced for 29 years, in this study, the cause of fatigue crack is investigated and the fatigue safety of the bridge is examined based on fieldmeasurement by the loading test and real traffic condition. Also, structural analyses using gridmodel and detailed analysis model were carried out for the welded connection parts of longitudinal rib and diaphramthat fatigue crack occurred. Additionally, the behavior characteristics due to running vehicles were investigated by using influence area analysis for these structural details, and the occurrence causes of fatigue crack in the target bridge were clarified.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

A three-dimensional finite element analysis for initial stress of maxillary incisiors during activation of upper utility arch wire (Utility Arch Wire 적용시 상악 중절치 및 측절치의 초기 응력 분포에 관한 3차원 유한요소법적 연구)

  • Lee, Jong-hyun;Cha, Kyung-Suk;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.29 no.4 s.75
    • /
    • pp.411-424
    • /
    • 1999
  • The purpose of this study was to find the difference of stress distribution of initial compressive and tensile stress when anterior section of upper utility arch was activated crown lingual torque of $5^{\circ},\;10^{\circ},\;15^{\circ}$ through three-dimensional finite element analysis. For this study the finite element model of upper central and lateral incisors, 1st. and 2nd. premolars and 1st. molars and each periodontal membrane and upper utility arch were made. From the solutions of ANSYS the followings were obtained. 1. $5^{\circ},\;10^{\circ},\;15^{\circ}$ crown lingual torque produce the almost similar distribution and measurement of initial compressive and tensile stress. 2. Acivated upper utility arch torqued central inciors lingually and lateral incisors labially.

  • PDF

The Forced Motion Analyses by Using Two Dimensional 6-Node and Three Dimensional 16-Node Isoparametric Elements with Modification of Gauss Sampling Point (6절점 2차원 및 16절점 3차원 등매개변수 요소의 가우스 적분점 수정을 이용한 강제진동 해석)

  • 김정운;권영두
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.87-97
    • /
    • 1995
  • For the same configuration of two-dimensional finite element models, 6-node element exhibits stiffer bending stiffness than 8-node element. This is true in the relation between 16-node element and 20-node element for three-dimensional model. This stiffening phenomenon comes from the elimination of several mid nodes from full-node elements. Therefore, this may be called 'relative stiffness stiffening phenomenon'. It seems that there are a couple of ways to correct the stiffening effect, however, we could find only one effective method-the method of modification of Gauss sampling points-which passes the patch test and does not alter other kinds of stiffness, such as extensional stiffness. The quantity of modification is a function of Poisson's ratios of the constituent materials. We could obtain two modification equations, one for plane stress case and the other for plane strain case. This method can be extended to 3-dimensional solid elements. Except the exact plane strain cases, most 3-dimensional plates could be modeled successfully with 16-node element modified by the equation for the plane stress case. The effectiveness of the modification method is checked by applying it to several examples with excellent improvements. In numerical examples, beams with various boundary conditions are subjected to static and time-dependent loads. Free and forced motion analyses of beams and plates are also tested. The beam and plate may be composed of isotropic multilayers as well as a single layer.

  • PDF

Flexural Behavior and Analysis of RC Beams Strengthened with Prestressed CFRP Plates (프리스트레스트 탄소섬유판으로 보강된 철근콘크리트 보의 휨 거동 및 해석)

  • Yang, Dong-Suk;Park, Jun-Myung;You, Young-Chan;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.467-474
    • /
    • 2007
  • In this paper, a total of 13 beams with bonding, anchorage system, amount of prestressing and span length as variables of experiment were tested in flexural test and analyzed in finite element analysis; one control beam, two simplified FRP-boned beams, four prestressed FRP-unbonded beams and four prestressed FRP-bonded beams. Also, a nonlinear finite element analysis of beams in the flexural test is performed by DIANA program considered material nonlinear of concrete, reinforcement and the interfacial bond-slip model between concrete and CFRP plates. The failure mode of prestressed CFRP plated-beams is not debonding but FRP rupture. RC members strengthened with external bonded prestressed CFRP plates occurred 1st and 2nd debonding of the composite material. After the debonding of CFRP plates occurs in bonded system, behavior of bonded CFRP-plated beams change into that of unbonded CFRP-plated beams due to fix of the anchorage system. Also, It was compared flexural test results and analytical results of RC members strengthened with CFRF plates. The ductility of beams strengthened by CFRP plates with the anchorage system is considered high with the ductility index of above 3. Analysis results showed a good agreement with experiment results in the debonding load, yield load and ultimate load.