• Title/Summary/Keyword: beam model

Search Result 3,455, Processing Time 0.034 seconds

Predicting shear capacity of NSC and HSC slender beams without stirrups using artificial intelligence

  • El-Chabib, H.;Nehdi, M.;Said, A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.79-96
    • /
    • 2005
  • The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty's method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.

Building frame - pile foundation - soil interaction analysis: a parametric study

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.55-79
    • /
    • 2010
  • The effect of soil-structure interaction on a single-storey, two-bay space frame resting on a pile group embedded in the cohesive soil (clay) with flexible cap is examined in this paper. For this purpose, a more rational approach is resorted to using the finite element analysis with realistic assumptions. Initially, a 3-D FEA is carried out independently for the frame on the premise of fixed column bases in which members of the superstructure are discretized using the 20-node isoparametric continuum elements. Later, a model is worked out separately for the pile foundation, by using the beam elements, plate elements and spring elements to model the pile, pile cap and soil, respectively. The stiffness obtained for the foundation is used in the interaction analysis of the frame to quantify the effect of soil-structure interaction on the response of the superstructure. In the parametric study using the substructure approach (uncoupled analysis), the effects of pile spacing, pile configuration, and pile diameter of the pile group on the response of superstructure are evaluated. The responses of the superstructure considered include the displacement at top of the frame and moments in the columns. The effect of soil-structure interaction is found to be quite significant for the type of foundation considered in the study. Fair agreement is observed between the results obtained herein using the simplified models for the pile foundation and those existing in the literature based on a complete three dimensional analysis of the building frame - pile foundation - soil system.

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.

Mechanical behavior of FRP confined steel tubular columns under impact

  • Liu, Qiangqiang;Zhou, Ding;Wang, Jun;Liu, Weiqing
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.691-702
    • /
    • 2018
  • This paper presents experimental and analytical results of fiber reinforced polymer (FRP) confined steel tubular columns under transverse impact loads. Influences of applied impact energy, thickness of FRP jacket and impact position were discussed in detail, and then the impact responses of FRP confined steel tubes were compared with bare steel tubes. The test results revealed that the FRP jacket contributes to prevent outward buckling deformation of steel at the clamped end and inward buckling of steel at the impact position. For the given applied impact energy, specimens wrapped with one layer and three layers of FRP have the lower peak impact loads than those of the bare steel tubes, whereas specimens wrapped with five layers of FRP exhibit the higher peak impact loads. All the FRP confined steel tubular specimens displayed a longer duration time than the bare steel tubes under the same magnitude of impact energy, and the specimen wrapped with one layer of FRP had the longest duration time. In addition, increasing the applied impact energy leads to the increase of peak impact load and duration time, whereas increasing the distance of impact position from the clamped end results in the decrease of peak impact load and the increase of duration time. The dynamic analysis software Abaqus Explicit was used to simulate the mechanical behavior of FRP confined steel tubular columns, and the numerical results agreed well with the test data. Analytical solution for lateral displacement of an equivalent cantilever beam model subjected to impact load was derived out. Comparison of analytical and experimental results shows that the maximum displacement can be precisely predicted by the present theoretical model.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Three Dimensional Correction Factors for the Added Mass Moment of Inertia of Ships in Torsional Vibration (선체(船體)비틂진동(振動)에 있어서의 부가관성(附加慣性)모우멘트 3차원수정계수(次元修正係數))

  • K.C.,Kim;H.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.15-22
    • /
    • 1974
  • As for the added mass moment of inertia of ships in torsional vibration, it seems that the works by T. Kumai[1,2] are the only systematic one available currently. The work[1] is for the calculation of the two dimensional correction factors with finitely-long elliptic cylinders as the mathematic model. In this work the authors recalculated the above factors, $J_{\tau}$, with the same mathematic model and the same problem formulation, and presented the numerical results in Fig. 1. The reason why the reinvestigation was done was that in Kumai's work he obtained the solutions of the Mathieu equations, which was derived from the problem formulation for the velocity potential, under the assumption that the dummy constant q involved in the equations was always far less than unity, whereas in fact it takes values within the region of $0<q{\leq}{\infty}$ in sequence. As a result the authors found two remarkable differences in general features of $J_{\tau}$(refer to Fg.3); one that the authors' numerical results are considerably higher than the results given in [2], and the other that for a given number of node those have properties of decreasing monotonically with increase of the beam-draft ratio while these rapidly decrease from a maximum value of near at B/T=2.00 with B/T becoming greater or less than ratio. It seems that the latter trend was resulted from the fact that the assumption of $q{\ll}1$ employed in [2] was more closely satisfied in the vicinity of B/T=2.00.

  • PDF

Three Dimensional Buckling Analysis of Continuous Welded Rail Track Under Thermal Load (온도하중을 고려한 장대레일 궤도의 3차원 좌굴 거동)

  • 강준석;임남형;양신추;강영종
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.471-478
    • /
    • 2000
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths. The joints cause many drawbacks in the track and lead to signeficant maintenance cost. so, railroad engineers became interested in eliminating joints. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. but, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, firstly, 3-D CWR track model and CWRB program exactly considering the influence of tie are developed far linear static and buckling analysis using finite element method. Characteristics of CWR track model are using 7-dofs beam element as rail, Offset technic exactly considering centroid axies difference of track components(rail, rail-pad-fastener, tie), and Thermal gradient considering thermal difference of top flange and bottom flange in rail section.. second,, Through the static and linear buckling analysis by CWRB, Influences of various track components (rail, ballast, fastener, tie and so on..) on CWR track behavior and stability was characterized.

  • PDF

Qualitative correlation between postoperatively increased vertical dimension and mandibular position in skeletal class III using partial-least-square path modeling

  • Kim, Na-Ri;Park, Soo-Byung;Lee, Jihyun;Choi, Youn-Kyung;Shin, Sang Min;Choi, Yong-Seok;Kim, Yong-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.15.1-15.7
    • /
    • 2017
  • Background: This study constructed a partial-least-square path-modeling (PLS-PM) model and found the pathway by which the postsurgical vertical dimension (VD) affects the extent of the final mandibular setback on the B point at the posttreatment stage for the skeletal class III surgery-first approach (SFA). Methods: This study re-analyzed the data from the retrospective study by Lee et al. on 40 patients with skeletal class III bimaxillary SFA. Variables were obtained from cone beam computed tomography (CBCT)-generated cephalograms. Authors investigated all variables at each time point to build a PLS-PM model to verify the effect of the VD on the final setback of the mandible. Results: From PLS-PM, an increase in $VD_{10}$ was found to decrease the absolute value of the final setback amount of the mandible, which reflects the postsurgical physiological responses to both surgery and orthodontic treatment, which, in turn, can be interpreted as an increase in postoperative mandibular changes. Conclusions: To resolve the issue of collinear cephalometric data, the present study adopted PLS-PM to assess the orthodontic treatment. From PLS-PM, it was able to summarize the effect of increased postsurgery occlusal vertical dimension on the increased changeability of the B point position at the posttreatment stage.

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Landscape Planning and Design Methods with Human Thermal Sensation (인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.