• Title/Summary/Keyword: beam model

Search Result 3,455, Processing Time 0.038 seconds

Prediction of Elastic Bending Modulus of Multi-layered Graphene Sheets Using Nanoscale Molecular Mechanics (나노스케일 분자역학을 이용한 다층 그래핀의 굽힘 탄성거동 예측)

  • Kim, Dae-Young;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In this paper, a description is given of finite element method (FEM) simulations of the elastic bending modulus of multi-layered graphene sheets that were carried out to investigate the mechanical behavior of graphene sheets with different gap thicknesses through molecular mechanics theory. The interaction forces between layers with various gap thicknesses were considered based on the van der Waals interaction. A finite element (FE) model of a multi-layered rectangular graphene sheet was proposed with beam elements representing bonded interactions and spring elements representing non-bonded interactions between layers and between diagonally adjacent atoms. As a result, the average elastic bending modulus was predicted to be 1.13 TPa in the armchair direction and 1.18 TPa in the zigzag direction. The simulation results from this work are comparable to both experimental tests and numerical studies from the literature.

Observation of the Vortex Interaction over an Yawed Delta Wing with Leading Edge Extension by Flow Visualization and 5-hole Probe Measurements (가시화와 5공 프로브 측정을 통한 연장된 앞전을 갖는 편요된 델타형 날개에서의 와류 상호작용 관찰)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.388-393
    • /
    • 2001
  • An experimental study is conducted to investigate the interaction of vortices over a delta wing with leading edge extension(LEX) through the off-surface flow visualization and the 5-hole probe measurements of the wing wake region. Especially, the application of a new visualization technique is employed by ultrasonic humidifier water droplet and laser beam sheet. The results, both the off-surface visualization and the 5-hole probe, show that LEX tends to stabilize the vortices of the delta wing up to the high angle of attack even though the model is yawed. With increasing yaw, the windward leading edge vortex moves inward, and closer to the wing surface, while the leeward vortex moves outwards and away from the wing surface. The vortex interaction is promoted in the windward side, and is delayed in the leeward side.

  • PDF

Robust Vibration Control of Smart Structures via Discrete-Time Fuzzy-Sliding Modes (이산시간 퍼지-슬라이딩모드를 이용한 스마트구조물의 강건진동제어)

  • Choi, Seung-Bok;Kim, Myoung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3560-3572
    • /
    • 1996
  • This paper presents a new discrete-time fuzzy-sliding mode controller for robust vibration control of a smart structure featuring a piezofilm actuator. A governong equation of motion for the smart beam structure is derived and discrete-time codel with mismatched uncertainties such as parameter variations is constructed ina state space. A discrete-time sliding mode control system consisting of an equivalent controller and a discontinuous controller is formulated. In the design of the equivalent part, so called an equivalent controller separation method is adopted to achieve vzster convergence to a sliding surface without extension of a sliding region, in which the system robustness maynot be guaranteed. On the other hand, the discontinuous part is constructed on the basis of both the sliding and the convergence conditions using a time-varying feedback gain. The sliding moide controller is then incorporated with a fuzzy technique to appropriately determine principal control parameters such as a discountinuous feedback gain. Experimental implementation on the forced and random vibraiton controls is undertaken in order to demonstrate superior control performance of the proposed controller.

Basic Performance Evaluation of the First Model of 4-Dimensional CT-Scanner

  • Mori, Shinichiro;Endo, Masahiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuzi;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.376-378
    • /
    • 2002
  • This work was carried out to evaluate the basic performances for 4D CT, which employed continuously rotating conebeam. The performances were evaluated with the same method as the conventional CT, because the standard method of evaluating 4D CT has not yet been established, and we think this result was helpful to establish it. 4D CT can give dynamic volume imaging data continuously and with high-speed. The results were isotropic except for the evaluation of distortion in which small distortions gradually appeared as coming off the center of phantom in longitudinal direction.

  • PDF

Modeling and Vibration Control of the Miniature Universal Testing Machine (소형 재료시험기의 모델링 및 진동 제어)

  • Bok, Jin;Kim, Yeung-Shik;Kweon, Hyeon-kyu;Kim, In-Soo;Choi, Seong-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.290-296
    • /
    • 2005
  • This paper proposes the modeling scheme of the Miniature Universal Testing Machine (MUTM) composed of 36 thin-beam-type bimorph PZTs and the control algorithm to minimize the residual vibration of the MUTM in the dynamic testing of specimens. In the operation of the MUTM, hysteresis, residual displacement and vibration of it are major issues. From the analysis of the MUTM behaviors, the hysteresis is described by the curving fitting scheme with the function of an input voltage. The dynamic characteristics of the MUTM are identified by the frequency domain modeling technique based on the experimental data. The interested bandwidth is focused on 125-315HZ for effective modeling and control. For the robust vibration control of the MUTM, the sliding mode control and the Kalman filter as observer are proposed. The paper also proposes the best input signal type to operate the MUTM effectively. The feasibility of the proposed modeling scheme and control algorithm are tested and verified experimentally.

A Stochastic Control for Nonlinear Systems under Random Disturbance Based on a Fluid Motion (유체운동에 의한 불규칙 가진을 받는 비선형계의 확률제어)

  • Oh, Soo-Young;Kim, Yong-Kwan;Cho, Lae-Kyoung;Choi, Young-Seob;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.892-896
    • /
    • 2001
  • Investigation is performed on the stability of nonlinear system under turbulent fluid motion modelled as white noise random process, which is a preliminary result in the course of research on the characteristic and nonlinear control of the stochastic system. Adopted physical model is beam-type structure with tip-mass and main base mass. The governing equation is derived via F-P-K approach in stochastic sense. By means of Gaussian Closure method infinite dynamic moment equations due to system nonlinearity is closed to finite one. At the best of authors' knowledge, it is the first trial to design nonlinear controller by using of sliding mode technique in stochastic domain and control performance and effect in stochastic domain is studied.

  • PDF

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

Buckling of restrained steel columns due to fire conditions

  • Hozjan, Tomaz;Planinc, Igor;Saje, Miran;Srpcic, Stanislav
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.159-178
    • /
    • 2008
  • An analytical procedure is presented for the determination of the buckling load and the buckling temperature of a straight, slender, geometrically perfect, axially loaded, translationally and rotationally restrained steel column exposed to fire. The exact kinematical equations of the column are considered, but the shear strain is neglected. The linearized stability theory is employed in the buckling analysis. Behaviour of steel at the elevated temperature is assumed in accordance with the European standard EC 3. Theoretical findings are applied in the parametric analysis of restrained columns. It is found that the buckling length factor decreases with temperature and depends both on the material model and stiffnesses of rotational and translational restraints. This is in disagreement with the buckling length for intermediate storeys of braced frames proposed by EC 3, where it is assumed to be temperature independent. The present analysis indicates that this is a reasonable approximation only for rather stiff rotational springs.

Numerical study on the connection type of inner-slab in double deck tunnel (복층터널 내부슬래브의 연결형식에 관한 수치해석적 연구)

  • Lee, Ho-Seong;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.441-451
    • /
    • 2016
  • This study analyzed behavior of the segment lining considering connection type between inner-slab and segment lining for a double deck tunnel by Shield TBM. In order to establish the design requirements of inner-slab and segment lining in double deck tunnel, inner structure of double deck tunnel at each purpose was analyzed and compared connection type between inner-slab and segment lining. And analyses have been carried out through the beam-spring model by MIDAS Civil 2012. As a result of this study, inner-slab, connection type of between inner-slab and segment lining and Lateral earth pressure coefficients were analyzed to verify the significant design factors.

A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels

  • Liu, Bo;Yu, Zhiwei;Han, Yanhui;Wang, Zhiliu;Yang, Shuo;Liu, Heng
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.405-418
    • /
    • 2020
  • Deep excavation may have impact on the adjacent tunnels. It is obvious that the excavation will adversely affect and even damage the existing tunnels if the induced deformation exceeds the capacity of tunnel structures. It hence creates a high necessity to predict tunnel displacement induced by nearby excavation to ensure the safety of tunnel. In this paper, a simplified method to evaluate the heave of the underlying tunnel induced by adjacent excavation is presented and verified by field measurement results. In the proposed model, the tunnel is represented by a series of short beams connected by tensile springs, compressional springs and shear springs, so that the rotational effect and shearing effect of the joints between lining rings can be captured. The proposed method is compared with the previous modelling methods (e.g., Euler-Bernoulli beam, a series of short beams connected only by shear springs) based on a field measured longitudinal deformation of subway tunnels. Results of these case studies show a reasonable agreement between the predictions and observations.