• Title/Summary/Keyword: beam absorption

Search Result 349, Processing Time 0.028 seconds

The Theoretical Study of Absorbed Dose Distributions in Water Phantom Irradiated by High Energy Photon Beam (물팬톰에 조사된 고에너지 광자선의 선량 분포 특성에 관한 이론적 고찰)

  • 최동락;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.75-84
    • /
    • 1990
  • We have claculated the absorbed dose distributions in water phantom irradiated by high energy photon beam. PDD (Percent Depth Dose) and Beam Profile can be represented by functions of depths and distances by using one dimensional model model based on transport theory. The parameters on scattering and absorption are evaluated by using non-linear regression process method. The values neeessary for calculation are obtained by simple experiment. The calculated values are in good agreement with the measured values.

  • PDF

An Analysis on the Effect of Application on Vibration Isolation Liner of Elevator Guide Rail Bracket (엘리베이터 가이드 레일 브라켓의 방진라이너 적용효과에 관한 분석)

  • Roh, Seung-Kwon;Kim, Eundo;Oh, Jong-Seok;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.145-151
    • /
    • 2019
  • In this study, the effects were analyzed by applying the vibration absorption liner into the guide rail bracket as a part of method to reduce the vibration and noise on the high-rise apartment. As the result of vibration absorption liner performance, it was checked that the level of vibration and noise was reduced around 65.49% in the car side and around 90.05% in the counterweight side. Therefore, the vibration absorption effect by the vibration absorption liner of elevator guide rail bracket became fairly good. In case of the vibration absorption liner application, there was an effect on the reduction of 7.26 to 22.22% at hoistway section area, 3,840,000 to 9,780000 KRW at the cost of material and installation by comparing with the damping beam application. Also, in case of the vibration absorption liner application with light weight instead of damping beam with heavy weight, it was thought to become significant effect at preventing the safety from the accidents on installation site.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Diode-Laser Absorption Sensors for measurement of combustion Gas (연소배기 가스의 계측을 위한 다이오드 레이저 센서)

  • Shin, Myung-Chul;Kim, Se-Won;Kim, Dong-Hyuck
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.26-35
    • /
    • 2006
  • This work forcus on the development of gas sensor that measure the concentrations of exhaust gas using diode laser, Each diode laser for exhaust gas measurement is set to work at near-IR using both DA and WMS methods. Also use of fiber-coupled optical elements makes such a sensor rugged and easy to align. The results showed that gas concentrations of $O_2$, CO, $CO_2$, NO are accurately measured within ${\pm}2%$ error. The application of WMS method increased the beam intensity 2-3 times higher than DA method. It were experimentally compared WMS (Wavelength Modulation Spectroscopy) with DA (Direct Absorption) for the accuracy.

  • PDF

A New All-optical Flip-flop Based on Absorption Nulls of an Injection-locked FP-LD

  • Lee, Hyuek Jae
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.405-410
    • /
    • 2020
  • A new all-optical flip-flop (AOFF) method based on the absorption nulls of an injection-locked Fabry-Perot laser diode (FP-LD) in transverse magnetic (TM) mode is proposed and experimentally demonstrated. For the set and reset operations of the AOFF, injection locking and the destructive minus of beating in transverse electric (TE) mode are used. The absorption nulls on the TM mode are modulated according to the operations, and then non-inverted (Q) and inverted (${\bar{Q}}$) outputs can be obtained simultaneously. Thanks to the use of several absorption nulls, the proposed AOFF can achieve multiple outputs with extinction ratios of more than 15 dB. Even though the experiment is demonstrated at 100 Mbit/s, the results of previous experiments using the injection of a CW holding beam imply that the operation speed can increase to 10 Gbit/s.

Structural Behavior of Beam-Column Joints Consisting of Composite Structures

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.111-120
    • /
    • 2002
  • This study proposes a joint model consisting of different types of members as a new structural system, and then investigates the resulting structural behavior. The joint model consists of a concrete-filled steel tube column (CFT) together with a steel reinforced concrete at the end plus reinforced concrete beam at the center. For comparison, two other joint models were designed, that are, a CPT with a reinforced concrete beam, and a CFT with a steel reinforced concrete at the end plus steel concrete beam at the center, then their joint capacity and rigidity, energy absorption capacity, etc., were all investigated. From the results, the CFT column with a steel reinforced concrete at the end plus steel concrete beam at the center was outstanding in terms of its capacity and rigidity. The results of this analysis demonstrate that an adequate connection type and reinforcement method with different materials of increasing the rigidity, thereby producing a capacity improvement along with protection from pre-fractures.

  • PDF

Comparison of Theoretical model with Experiment in Bead Shape of Laser Welding (레이저 용접의 비드 형상에 대한 실험치와 이론 결과의 비교)

  • Kim, J.D.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 1994
  • A theoretical heat-flow model incorporating with a constant moving CO$_{2}$ laser beam has been analyzed to predict depth and the shape of bead section during last beam welding. The laser beam is exponentially attenuated with an abosrption coefficient in the material. The solution can be expressed in terms of normalized variables. The experimental data were generated by usint CW 2 CO$_{2}$ laser with multi beam mode and CW 3 kW CO$_{2}$laser with Gaussian mode. The specimens were made as bead-on-plate welds for SM 10C, STS 304, STS 316, STS 420 and pure Nickel. The maximum possible penetration depth and the shape of beas section for given sources of laser power, travel speed and beam spot size can be prdicted with this model in a given material.

  • PDF

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Dynamic Performance of Guardrail System with Various Post Shapes Based on 3-D Soil Material Model (3차원 지반재료 모델기반의 다양한 지주형상을 갖는 노측용 가드레일의 동적성능 평가)

  • Lee, Dong Woo;Yeo, Yong Hwan;Yang, Seung Ho;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2014
  • PURPOSES : This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel W-Beam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS : It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.

Concrete beams submitted to various moisture environments

  • Multon, S.;Seignol, J.F.;Toutlemonde, F.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.71-83
    • /
    • 2006
  • This paper deals with the effects of various moisture environments on the structural behavior of concrete beams. The presented results were obtained within a large experimental program carried out at the Laboratoire Central des Ponts et Chauss$\acute{e}$es (LCPC), with Electricit$\acute{e}$ de France (EDF) as a partner. The aim of this paper is to point out and to quantify the strains resulting from unidirectional moisture conditions: a drying gradient applied during 14 months, followed by the re-wetting of the dried surface during 9 months. The effect of reinforcement on the shrinkage and on the deformation due to water absorption is pointed out. Moreover, a lot of tests on companion cylinders and prisms were carried out to determine the mechanical characteristics of the material and help checking analysis methods. The paper focuses on numerous measurements obtained during the 23 months on one plain concrete beam and one reinforced concrete beam: variation of water content, followed by precise weighing and gammadensitometry, relative humidity measurements, local and global deformations in the three directions and deflection of the beams. Thus, the effects of drying and water absorption on the behavior of concrete structures are documented and analyzed in comparison with existing representation of water diffusion.