• Title/Summary/Keyword: beads

Search Result 1,175, Processing Time 0.031 seconds

Sustained Release of Ibuprofen from Sodium Alginate Beads (알긴산나트륨을 이용한 이부프로펜의 용출지연)

  • Kwon, Sang-Keun;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • Alginic acid is a hydrophilic , colloidal polysaccharide obtained from cell wall of seaweed or brown algae and has a broad range of applications. Alginlc acid becomes alginate gel bead due to its cation-induced gelation. Dried alginate beads can be reswollen according to environmental pH. The purpose of this paper is to explore the possible applicability of alginate beads as an oral controlled release system of ibuprofen. In this experiment ibuprofen was incorporated in alginate beads and alginate beads were treated with various methods. Ibuprofen release from alginate beads in phosphate buffer (pH 7.4) was laster than in distilled water and dilute HCl. The release of ibuprofen was more sustained in bead than simple mixture and coprecipitate of ibuprofen and sodium alginate. The dissolution rate of ibuprofen was decreased in using of bead that hardened with formaldehyde. The dissolution rate of the drug from the bead was the fastest in 12 hour dried beads, 1.5%-sodium alginate concentration and 1%-calcium chloride concentration. Sodium alginate bead can be used as a sustaind release drug delivery system of water-insoluble drugs.

  • PDF

Immobilized ${\beta}-Cyclodextrin$ as a Simple and Recyclable Method for Cholesterol Removal in Milk

  • Kwak, H.-S.;Kim, S.-H.;Kim, J.-H.;Choi, H.-J.;Kang, J.
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.873-877
    • /
    • 2004
  • This study was designed to determine the optimum conditions of three different factors (mixing time, mixing temperature, and tube size) in reduction of cholesterol in milk using immobilized $\beta$-CD beads. Immobilized $\beta$-CD glass beads were prepared at different conditions of silaniza-tion and $\beta$-CD immobilization reactions. In result, the glass beads (diameter 1 mm) at 20 mM 3-isocyanatopropyltriethoxysilane and 30 mM $\beta$-CD without base showed the highest choles-terol removal rate as 41%. Using above immobilized $\beta$-CD glass beads, the cholesterol removal rate was 40.2% with 6 h of mixing time in 7 mm diameter tube at $10^{\circ}C$. After choles-terol removal from milk, the glass beads were washed for cholesterol dissociation and reused. In recycling study, the cholesterol removal rate was 41%, which was mostly same as that using new glass beads. These results indicated that cholesterol removal rate was about 40% with $\beta$-CD immobilized glass beads, however, the recycling efficiency was almost 100%.

The scientific analysis of glass beads excavated from Naesanri in Gosung (고대 유리구슬의 재질분석 연구-고성 내산리 출토 유리구슬을 중심으로)

  • Moon, Whan-Suk;Hwang, Jin-Ju;Cho, Nam-Chul;Hong, Jong-Ouk
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.57-75
    • /
    • 2000
  • We performed the scientific analysis through composition analysis, micro-structure investigation, melting point and hardness test to the glass beads excavated at Naesanri in Gosung. Through this investigation, we could examine closely the characterization of raw materials and manufacture technique As a result of micro-structure investigation of glass beads, it appeared that the bubbles in glass beads have remained. Coloring agents of yellow glass bead was remained to the shape of inclusion. And on observing the transparent solid particle, we can know that these do not melt the raw materials because of low melting temperature of a crucible. The result of composition analysis of all glass beads using ICP, these were classified as $Na_2O_2$-$SiO_2$ type of glass. Also, these added to $AI_2O_3$ to improve the durability. The value of Vickers hardness of glass beads appeared the HV 490-530. The HV 1,440 of the transparent solid particle was much more than that of inner glass bead. This means that raw materials do not melt because of a low melting temperature of a crucible. The result of melting temperature analysis of glass beads using DSC/TGA, it was measured about $1,250^{\circ}C$.

  • PDF

Preparation of PVC-LMO Bead with Dioxane Solvent and Adsorptive Properties of Lithium Ions (Dioxane을 용매로 한 PVC-LMO 비드의 제조와 Li+ 흡착특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1289-1297
    • /
    • 2014
  • In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dioxane solvent. XRD and SEM analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads prepared by dioxane solvent was about 2 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The optimum pH was pH 10. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir model was 24.25 mg/g. The thermodynamic parameters such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$ and ${\Delta}G^{\circ}$ were evaluated. The calculated ${\Delta}G^{\circ}$ was between -6.16 and -4.14 kJ/mol (below zero), indicating the spontaneous nature of $Li^+$ adsorption on PVC-LMO beads. Also, the results showed that PVC-LMO beads prepared in this study could be used for the removal of lithium ions from seawater containing coexisting ions such as $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$.

Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads (미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발)

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

De-NOx Characteristics for Cu-ZSM5/Alumina Beads Catalyst Filter in Urea-SCR System (Urea-SCR 시스템에서의 Cu-ZSM5/알루미나 비드 촉매필터의 De-NOx 특성)

  • Jang, Young-Sang;Shin, Young-Seop;Lee, Byoung-Jun;Park, Jai-Koo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.60-67
    • /
    • 2008
  • The catalytic filter of Cu-ZSM5/alumina beads was considered to reduce NOx in the urea SCR system. Catalytic support of porous alumina beads with mean pore size $130{\mu}m$ and porosity $75{\sim}83%$ were prepared using foaming and gel-casting method. The Cu-ZSM5 catalysts were coated on the supporting alumina beads using $Cu(NO_3)_2$ by ion exchange method. After a washcoating process was applied to coat 10w% Cu-ZSM5 on porous alumina bead, coating layer was estimated $20{\mu}m$ in thickness. The characterization and the feasibility as a catalytic supports were investigated. And the NOx conversion test in Cu-ZSM5/Alumina Beads filter system was conducted by using Urea as reductants under laboratory test. The NOx conversion was increased as size and porosity of beads and observed more than 95% excellent NOx conversion above $300^{\circ}C$.

Properties of Working Electrodes with Polystyrene Beads Addition in Dye Sensitized Solar Cells

  • Noh, Yunyoung;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.380-383
    • /
    • 2015
  • We prepared the $TiO_2$ layer with 0 ~ 4 wt% of polystyrene (PS) beads having a radius of 250 nm to increase the dye adsorption and energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Then, we fabricated DSSCs using $0.45cm^2$ active area. FE-SEM was used to characterize the microstructure consisting of $TiO_2$ layer and PS beads. UV-VIS-NIR was used to determine the optical absorbance of working electrodes (WEs). Solar simulator and potentiostat were used to determine the photovoltaic properties. We observed that pores having a radius of 250 nm were formed with the density of $0.15ea/{\mu}m^2$ in $TiO_2$ layers after conducting the sintering process. The absorbance in visible light regime was found to increase with the increase in the amount of PS beads. The ECE increased from 4.66% to 5.25% when the amount of PS beads was increased from 0 to 4 wt%. This is because the pores of PS beads increased the adsorption of dye. Our results indicate that the ECE of the DSSCs can be enhanced by the addition of an appropriate amount of PS beads into $TiO_2$ layers.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

Removal characteristic of Escherichiacoli and water property conversion for Discharge tube with globular $ZrO_2$ (구형 지르코니아를 갖는 수방전관의 수질성분변환 및 세균제거특성)

  • Lee, Dong-Hoon;Park, Hong-Jae;Park, Jae-Youn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.550-553
    • /
    • 2003
  • This paper was shown water properly conversion and removal characteristic of escherichia coli for discharge tube with $ZrO_2$ beads. At the result of the removal characteristic experiments of escherichia coli using the discharge tube with $ZrO_2$ beads, because the electric field is also increased when input voltage is increased, the removal characteristic of escherichia coli was appeared relation connection to input voltage. And if a passing number of test water in discharge tube with $ZrO_2$ beads is increased, the removal ratio of escherichia coli is to be increased because passing number of electric field section is increased. And if diameter of $ZrO_2$ beads is increased, the removal time of escherichia coli is to be decreased because dielectric polalization of $ZrO_2$ beads. Also, the removal ratio of escherichia coli of the discharge tube with $ZrO_2$ beads. is appeared higher than the removal ratio of the discharge tube without $ZrO_2$ beads. And a salutation point of ozone and $H_2O_2$ generation density inner water was appeared near 60[min].

  • PDF

Sonochemial and Sonophysical Effects in Heterogeneous Systems (불균일계에서의 초음파 캐비테이션 물리적 및 화학적 효과 연구)

  • Lee, Dukyoung;Son, Younggyu
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 2019
  • The objective of this study was to investigate the sonophysical and sonochemical effects induced by acoustic cavitation in heterogeneous systemin a 28 kHz double-bath reactor using calorimetry, the aluminiumfoil erosion test, and the luminol test. With no glass beads, calorimetric power in the inner vessel increased as much as the outer sonoreactor lost and total calorimetric power was maintained for various liquid height conditions (0.5 ~ 7 cm) in the vessel. Higher calorimetric energy was obtained at higher liquid height conditions. Similar results were obtained when glass beads were placed with various beads heights (0.5 ~ 2.0 cm) and relatively high calorimetric energy was obtained in spite of large attenuation in the glass beads layer. An aluminium foil placed between the bottom of the inner vessel and the glass beads layer was damaged, indicating significant sonophysical effects. Much less damage was detected when the foil was placed above the beads layer due to large attenuation of ultrasound. Sonochemical effects, visualized by sonochemiluminescence (SCL), also decreased significantly when the beads were placed in the vessel. It was established that the optimization of the liquid height above the solid-material layer could enhance the sonophysical and sonochemical effects in the double-bath sonoreactors.