• Title/Summary/Keyword: bead size

Search Result 260, Processing Time 0.022 seconds

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

[ De-NOx ] Characteristics for Pt/γ-Alumina/Cordierite Foam Filter of Beads Shape (Pt/γ-Alumina/Cordierite 비드형 세라믹 폼 필터의 NOx 제거 특성)

  • Park, Jung-Wook;Park, Jay-Hyun;Park, Jai-Koo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.277-285
    • /
    • 2007
  • Porous cordierite beads, of which the average pore size was $130{\mu}m$ and porosity was about 80%, were prepared by the foaming method and then their application as support of the $Pt/{\gamma}-alumina$ catalyst for $NO_x$, reduction with propene was investigated. The pressure drop of a 2 mm porous beads filter was less than that of a 1 mm porous beads filter and the difference in pressure drop between these two increased as the flow rate increased. The catalytic activity of $Pt/{\gamma}-alumina$ washcoated on the porous bead was tested with varying Pt loading $(0.005{\sim}0.1g/cm^3),\;C_3H_6/NO$ mole ratio $(0.5{\sim}8)$, space velocity $(20,000{\sim}30,000h^{-1})$ and oxygen contents (1 and 8). Pt loading of $0.04g/cm^3$ showed the highest activity for $NO_x$ conversion. The $De-NO_x$, test was operated in the temperature range of $200{\sim}400^{\circ}C$ and the best operation temperature of the catalytic filter is about $250^{\circ}C$. As the C/N ratio increased, increase of the $NO_x$, conversion might result from the increase in exhaustion of the amount of oxygen by the reduction of hydrocarbon. $NO_x$ conversion at $20,000h^{-1}$ of space velocity shows a maximum 34% higher conversion than that at $30,000h^{-1}$. On condition that $O_2$ was 5%, space velocity was $20,000h^{-1}$ and the C/N ratio was 8, the $NO_x$ conversion exhibited a maximum of 40% at $250^{\circ}C$.

A study of the determination of off-set position for Nd:YAC laser welding between SCP steel sheet and STS304 sheet (Nd:YAG 레이저빔을 이용한 SCP 강판과 STS304강판 용접시 오프셋(off-set) 위치 결정에 관한 연구)

  • Yoon B. S.;Kim T. H.;Park G. Y.;Lee G. D.
    • Laser Solutions
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • This work was attempted to join SCP sheet and STS304 sheet by using Nd:YAC laser beam. SCP sheet has good formability and low cost, while STS304 has excellent corrosion resistance and mechanical properties in high temp. In this experiment, butt joint type was used to develop the tailored blank welding for dissimilar steel. Sheets which have different thermal properties. Computer simulation was conducted to obtain the off-set position for efficient welding by considering laser power, scanning speed, focal length and basic properties. The result showed that the optimum thermal distribution was obtained when the laser beam was irradiated at $0.05{\sim}0.1$ mm off-set toward the SCP sheet side. The experiment was conducted based on the result of computer simulation to show the same optimum conditions. Optimum conditions were 3KW in laser beam power, 6m/min in scanning speed, -0.5mm in focal position, 0.1mm off-set toward SCP. Microhardness test, tensile test, bulge test, optical microscopy, EDS, and XRD were performed to observe the microstructure around fusion zone and to evaluate the mechanical properties of optimum conditions, The weld zone had high microhardness values by the formation of the martensitic structure. Tensile test measured the strength of welded region by vertical to strain direction and the elongation of welded region by parallel to strain direction. Bulge test showed $52\%$ formability of the original materials. Bead shape, grain size, and martensitic structure were observed by the optical microscopy in the weld zone. Detailed results of EDS, XRD confirmed that the welded region was connected of martensitic structure.

  • PDF

Effect of the Shape and Size of Quorum-Quenching Media on Biofouling Control in Membrane Bioreactors for Wastewater TreatmentS

  • Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Kwon, Hyeokpil;Nahm, Chang Hyun;Lee, Chung-Hak;Park, Pyung-Kyu;Choo, Kwang-Ho;Lee, Jung-Kee;Oh, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1746-1754
    • /
    • 2016
  • Recently, spherical beads entrapping quorum quenching (QQ) bacteria have been reported as effective moving QQ-media for biofouling control in MBRs for wastewater treatment owing to their combined effects of biological (i.e., quorum quenching) and physical washing. Taking into account both the mass transfer of signal molecules through the QQ-medium and collision efficiencies of the QQ-medium against the filtration membranes in a bioreactor, a cylindrical medium (QQ-cylinder) was developed as a new shape of moving QQ-medium. The QQ-cylinders were compared with previous QQ-beads in terms of the QQ activity and the physical washing effect under identical loading volumes of each medium in batch tests. It was found that the QQ activity of a QQ-medium was highly dependent on its specific surface area, regardless of the shape of the medium. In contrast, the physical washing effect of a QQ-medium was greatly affected by its geometric structure. The enhanced anti-biofouling property of the QQ-cylinders relative to QQ-beads was confirmed in a continuous laboratory-scale MBR with a flat-sheet membrane module.

Exploratory Investigation of Genetic Associations with Basal Cell Carcinoma Risk: Genome-Wide Association Study in Jeju Island, Korea

  • Yun, Byung Min;Song, Jung-Kook;Lee, Ji-Young
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7443-7447
    • /
    • 2014
  • Aim: Little is known about the genetic associations with Basal cell carcinoma (BCC) risk in non-Caucasian populations, in which BCC is rare, as in Korea. We here conducted a pilot genome-wide association study (GWAS) in 12 patients and 48 standard controls. Method: A total of 263,511 SNPs were analyzed with the Illumina HumanOmni1 Quad v1.0 DNA Analysis BeadChip for cases and Korean HapMap 570K for controls. Results: SNP-based analyses, based on the allele genetic model with adjustment for sex and age showed suggestive associations with BCC risk for 6 SNPs with a P-value (P < 0.0005). However, these associations were not statistically significant after Bonferroni correction: rs1040503, rs2216491, rs13407683, rs4751072, rs9891263, and rs1368474. In addition, results from gene-based analyses showed suggestive associations with BCC risk for 33 candidate genes with a P-value (P <0.0005). Consistent with previous GWAS and replication studies in Caucasian populations, PADI6, RHOU and SLC45A2 were identified as having null associations with BCC (P > 0.05), likely due to the smaller sample size. Conclusions: Although this was a small-scale negative study, to our knowledge, we have conducted the first GWAS for BCC risk in an Asian population. Further large studies in non-Caucasian populations are required to achieve statistical significance and confirm these findings.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

Biological Effects Of Flurbiprofen Loaded Chitosan To Gingival Fibroblast (Flurbiprofen 함유 키토산 제제가 치은 섬유아세포에 미치는 영향)

  • Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Seung-Jin;Rhyu, In-Cheol;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.317-333
    • /
    • 1996
  • The main goal of periodontal regeneration is to be achieved by epithelial exclusion, periodontal ligament cell activation or alveolar bone regeneration. The purpose of this study was to investigate on the physico- chemical and biological characteristics of biodegradable chitosan beads. Chitosan beads were fabricated by ionic gelation with sodium tripolyphosphate and they had the size in 300um diameter. As therapeutic agent, flurbiprofen was incorporated into the beads by 10, 20% loading contents. The release of drugs from the chitosan beads was measured in vitro. Also, biological activity tests of flurbiprofen loaded chitosan beads including cytotoxicity test, ihhibition of $IL-1{\beta}$ production, suppression to $PGE_2$ production, collagenase inhibition test, the ability of total protein synthesis, and tissue response were evaluated. The amount of flurbiprofen released from chitosan was 33-50% during 7 days. Minimal cytotoxicity was observed in chitosan beads. Flurbiprofen released from chitosan beads significantly suppressed the $IL-1{\beta}$ production of monocyte, $PGE_2$ production and markedly inhibited collagenase activity. Meanwhile, flurbiprofen released from this system showed increased ability for protein synthesis. Throughout 4 -week implantation period, no significant inflammatory cell infiltrated around chitosan bead and also fibroblast like cell types at the beads - tissue interface were revealed with gradual degradation of implanted chitosan beads. From these results, it was suggested that flurbiprofen loaded chitosan beads can be effectively useful for biocompatible local delivery system in periodontal regeneration.

  • PDF

Genome-wide Single Nucleotide Polymorphism Analyses Reveal Genetic Diversity and Structure of Wild and Domestic Cattle in Bangladesh

  • Uzzaman, Md. Rasel;Edea, Zewdu;Bhuiyan, Md. Shamsul Alam;Walker, Jeremy;Bhuiyan, A.K.F.H.;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1381-1386
    • /
    • 2014
  • In spite of variation in coat color, size, and production traits among indigenous Bangladeshi cattle populations, genetic differences among most of the populations have not been investigated or exploited. In this study, we used a high-density bovine single nucleotide polymorphism (SNP) 80K Bead Chip derived from Bos indicus breeds to assess genetic diversity and population structure of 2 Bangladeshi zebu cattle populations (red Chittagong, n = 28 and non-descript deshi, n = 28) and a semi-domesticated population (gayal, n = 17). Overall, 95% and 58% of the total SNPs (69,804) showed polymorphisms in the zebu and gayal populations, respectively. Similarly, the average minor allele frequency value was as high 0.29 in zebu and as low as 0.09 in gayal. The mean expected heterozygosity varied from $0.42{\pm}0.14$ in zebu to $0.148{\pm}0.14$ in gayal with significant heterozygosity deficiency of 0.06 ($F_{IS}$) in the latter. Coancestry estimations revealed that the two zebu populations are weakly differentiated, with over 99% of the total genetic variation retained within populations and less than 1% accounted for between populations. Conversely, strong genetic differentiation ($F_{ST}=0.33$) was observed between zebu and gayal populations. Results of population structure and principal component analyses suggest that gayal is distinct from Bos indicus and that the two zebu populations were weakly structured. This study provides basic information about the genetic diversity and structure of Bangladeshi cattle and the semi-domesticated gayal population that can be used for future appraisal of breed utilization and management strategies.

Mesoscale Simulation of Polymeric Membranes for Energy and Environmental Application (에너지-환경 분야용 분리막의 Mesoscale Simulation 동향 연구)

  • Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.121-128
    • /
    • 2017
  • Mesoscale simulation is a type of molecular simulation techniques where groups of atoms are defined as a single bead for calculations, and accordingly, is possible to simulate longer time ($ns{\sim}{\mu}s$) and bigger size ($nm{\sim}{\mu}m$). There are two types of mesoscale simulations : (1) particle-based mesoscale which simulates the system by calculating the movement of the particles themselves and (2) field theory which simulates the system by calculating changes in the chemical potential filed or density field. Mesoscale simulations are powerful tools to study the macroscopic properties of polymers for various applications of energy and environment. In this review, we report the trends and useful information in mesoscale simulation and provide an opportunity for membrane researchers working in the energy-environment field to understand mesoscale simulation techniques.

Compositions and Characteristics on the Glass Beads from Jeongjang?ri Site in Geochang, Korea (거창 정장리 유적 출토 유리구슬의 화학 조성과 특징)

  • Yun, Ji Hyeon;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • This study defined material and characteristics of 24 glass fragments and 26 whole glass beads. The feature of glass beads shape are divided into 5 types following color, size, weathering condition and manufacturing techniques. Through the chemical composition, the first and second type is soda glass, the third type is potash glass, the fourth and fifth type is lead barium glass. This site showed the aspect that the chemical composition is changed according to the feature of glass shape and was found that various chemical compositions. Looking at the flow of glass culture, the tomb that are lead barium glass IItype and potash glass I, IItype is relatively preceding period and the tomb that are soda glass and lead barium glass IIItype is following period.