Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.121

Mesoscale Simulation of Polymeric Membranes for Energy and Environmental Application  

Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH))
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
Publication Information
Membrane Journal / v.27, no.2, 2017 , pp. 121-128 More about this Journal
Abstract
Mesoscale simulation is a type of molecular simulation techniques where groups of atoms are defined as a single bead for calculations, and accordingly, is possible to simulate longer time ($ns{\sim}{\mu}s$) and bigger size ($nm{\sim}{\mu}m$). There are two types of mesoscale simulations : (1) particle-based mesoscale which simulates the system by calculating the movement of the particles themselves and (2) field theory which simulates the system by calculating changes in the chemical potential filed or density field. Mesoscale simulations are powerful tools to study the macroscopic properties of polymers for various applications of energy and environment. In this review, we report the trends and useful information in mesoscale simulation and provide an opportunity for membrane researchers working in the energy-environment field to understand mesoscale simulation techniques.
Keywords
energy & environment; polymeric membranes; molecular simulation; mesoscale simulation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y.-h. Tang, Y.-d. He, and X.-l. Wang, "Three-dimensional analysis of membrane formation via thermally induced phase separation by dissipative particle dynamics simulation", J. Membr. Sci., 437, 40 (2013).   DOI
2 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011).   DOI
3 C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016).   DOI
4 K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004).   DOI
5 C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036 (2010).   DOI
6 S. S. Jang, V. Molinero, T. Cagin, and W. A. Goddard Iii, "Nanophase-segregation and transport in nafion 117 from molecular dynamics simulations: Effect of monomeric sequence", J. Phys. Chem. B, 108, 3149 (2004).   DOI
7 P. Y. Chen, C. P. Chiu, and C. W. Hong, "Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes", J. Power Sources, 194, 746 (2009).   DOI
8 P. V. Komarov, I. N. Veselov, P. P. Chu, and P. G. Khalatur, "Mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone) and Nafion", Soft Matter, 6, 3939 (2010).   DOI
9 J. T. Wescott, Y. Qi, L. Subramanian, and T. W. Capehart, "Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes", J. Chem. Phys., 124, 134702 (2006).   DOI
10 D. Wu, S. J. Paddison, and J. A. Elliott, "A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations", Energy. Environ. Sci., 1, 284 (2008).   DOI
11 C. H. Park, H. K. Kim, C. H. Lee, H. B. Park, and Y. M. Lee, "$Nafion^{(R)}$ nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance", J. Power Sources, 194, 646 (2009).   DOI
12 B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, "Aligned multiwalled carbon nanotube membranes", Science, 303, 62 (2004).   DOI
13 H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013).   DOI
14 D. J. Kim and S. Y. Nam, "Development and application trend of bipolar membrane for electrodialysis", Membr. J., 23, 319 (2013).
15 S. N. Schiffres, K. H. Kim, L. Hu, A. J. H. McGaughey, M. F. Islam, and J. A. Malen, "Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels", Adv. Funct. Mater., 22, 5251 (2012).   DOI
16 A. Maiti, J. Wescott, and P. Kung, "Nanotube-polymer composites: Insights from Flory-Huggins theory and mesoscale simulations", Mol. Simul., 31, 143 (2005).   DOI
17 C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil, and E. Drioli, "Mixed matrix membranes containing functionalized multiwalled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion", J. Membr. Sci., 514, 195 (2016).   DOI
18 T. H. Lee, H. D. Lee, and H. B. Park, "Current research trends in polyamide based nanocomposite membranes for desalination", Membr. J., 26, 351 (2016).   DOI
19 J. I. Ha and T. B. Kang, "Separation of $H_2$ and $N_2$ gases by PDMS-chitosan composite membranes", Membr. J., 23, 418 (2013).   DOI
20 H. W. Kim and H. B. Park, "Gas transport behavior of polydopamine-coated composite membranes", Membr. J., 23, 136 (2013).
21 C. H. Park, H. S. Kim, and Y. M. Lee, "Surface modification of proton exchange membrane by introduction of excessive amount of nanosized silica", Membr. J., 24, 301 (2014).   DOI
22 P. Espanol and P. Warren, "Hydrodynamics from dissipative particle dynamics", Phys. Rev. E, 52, 1734 (1995).   DOI
23 J. C. Jansen, M. MacChione, E. Tocci, L. De Lorenzo, Y. P. Yampolskii, O. Sanfirova, V. P. Shantarovich, D. Hofmann, and E. Drioli, "Comparative study of different probing techniques for the analysis of the free volume distribution in amorphous glassy perfluoropolymers", Macromolecules, 42, 7589 (2009).   DOI
24 C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341 (2014).   DOI
25 J. Huh and W. H. Jo, "Simulation of self-assembled structures in macromolecular systems: From atomistic model to mesoscopic model", Polymer(Korea), 30, 453 (2006).
26 Y.-D. He, Y.-H. Tang, and X.-L. Wang, "Dissipative particle dynamics simulation on the membrane formation of polymer-diluent system via thermally induced phase separation", J. Membr. Sci., 368, 78 (2011).   DOI
27 J. T. Wescott, Y. Qi, L. Subramanian, and T. W. Capehart, "Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes", J. Chem. Phys., 124, 134702 (2006).   DOI
28 A. Knoll, K. S. Lyakhova, A. Horvat, G. Krausch, G. J. A. Sevink, A. V. Zvelindovsky, and R. Magerle, "Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid", Nat. Mater., 3, 886 (2004).   DOI
29 X.-L. Wang, H.-J. Qian, L.-J. Chen, Z.-Y. Lu, and Z.-S. Li, "Dissipative particle dynamics simulation on the polymer membrane formation by immersion precipitation", J. Membr. Sci., 311, 251 (2008).   DOI